首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
采用半连续种子乳液聚合工艺,利用单因素和正交实验设计方法,使用由非离子型乳化剂辛烷基酚聚氧乙烯醚(OP-10)与阴离子型乳化剂十二烷基硫酸钠(SDS)复配的复合乳化剂,以及反应型乳化剂马来酸酐单酯硫酸钠(OS)合成平均粒径为190nm的有机硅改性丙烯酸酯乳液.研究乳化剂用量、引发剂用量、有机硅用量、聚合搅拌速度、单体滴加时间、软硬单体配比、聚合温度7个因素对单体转化率的影响.极差分析各因素对单体转化率影响的主次顺序为:乳化剂用量〉软硬单体质量配比〉有机硅用量〉单体滴加时间〉聚合搅拌速度〉引发剂用量〉聚合温度.得出制备有机硅改性丙烯酸酯乳液最佳工艺条件:乳化剂用量4%,引发剂用量0.6%,有机硅用量8%,聚合搅拌速度180r/min,单体滴加时间2h,聚合温度75℃,软硬单体配比43:54.  相似文献   

2.
采用预乳化工艺,半连续种子聚合法,通过丙烯酸丁酯(BA)、苯乙烯(St)、丙烯腈(AN)、丙烯酸(AA)以及磷酸酯功能性单体Y自由基聚合反应,合成了一种功能性苯丙乳液.考察了乳化剂种类、乳化剂用量、乳化剂复配比、引发剂用量、软硬单体比、功能单体AA的用量以及含磷单体Y的用量对乳液及涂膜性能的影响.结果表明,采用阴离子型...  相似文献   

3.
甲基丙烯酸系四元共聚乳液的研制   总被引:1,自引:0,他引:1  
以苯乙烯、丙烯酸丁酯以及丙烯酸2-乙基已酯作为主单体,甲基丙烯酸作为功能单体,十二烷基硫酸钠(SDS)和OP-10作为复合乳化剂,采用乳液聚合法合成四元共聚物苯丙乳液.通过对单体配比、引发剂用量、乳化剂配比及用量的实验研究,制得化学稳定性、机械稳定性、稀释稳定性均佳,粘度适宜乳液.  相似文献   

4.
研究了以丙烯酰胺为单体,采有反相乳液聚合的方法制备高分子量的聚合产品,并研究了引发剂种类,引发剂的浓度,反应温度,乳化剂用量等因素对聚合产品分子量,表观粘度及转化率的影响。  相似文献   

5.
一种新型水性环保防锈涂料的研制   总被引:1,自引:0,他引:1  
以苯乙烯和丙烯酸丁酯作为主要单体,甲基丙烯酸及甲基丙烯酸甲酯作为必要成分,采用过硫酸盐作引发剂,在乳化剂作用下进行聚合制得苯丙乳液.通过正交实验和综合评分的方法,研究了多元苯丙乳液体系的聚合方式、共聚单体、软/硬单体配比、乳化剂用量、引发剂用量和聚合温度对乳液性能的影响,确定了制备苯丙乳液的最佳工艺参数,由其配制的水性防锈涂料性能优良.  相似文献   

6.
以苯乙烯和丙烯酸丁酯作为主要单体,甲基丙烯酸及甲基丙烯酸甲酯作为必要成分,采用过硫酸盐作引发剂,在乳化剂作用下进行聚合制得苯丙乳液。通过正交实验和综合评分的方法,研究了多元苯丙乳液体系的聚合方式、共聚单体、软/硬单体配比、乳化剂用量、引发剂用量和聚合温度对乳液性能的影响,确定了制备苯丙乳液的最佳工艺参数,由其配制的水性防锈涂料性能优良。  相似文献   

7.
苯乙烯-丙烯酸丁酯乳液性能的研究   总被引:1,自引:0,他引:1  
介绍了以苯乙烯、丙烯酸丁酯和丙烯酸为反应单体,过硫酸铵为引发剂苯丙乳液的合成工艺。通过实验确定了新产品的原料配比以及主要技术性能指标,同时讨论了单体、引发剂、乳化剂及温度对乳液性能的影响。结果表明,以苯乙烯、丙烯酸丁酯和丙烯酸为主要单体的苯丙乳液具有优良的化学稳定性。  相似文献   

8.
采用乳液聚合技术,合成了环氧-丙烯酸LIPN,通过对聚合物乳液的收率和Ca2 稳定性的测定,对环氧树脂用量、复合乳化剂的配比、复合乳化剂用量、聚合工艺、水溶性单体以及引发剂用量等影响环氧-丙烯酸LIPN聚合物乳液稳定性的因素进行了分析研究.  相似文献   

9.
以丙烯酸异辛酯(2-EHA)、甲基丙烯酸甲酯(MMA)、丙烯酸(AA)和丙烯酸2-羟乙酯(2-HEA)为聚合单体,过氧化苯甲酰(BPO)和偶氮二异丁腈(AIBN)(质量比1∶1)的复合物为引发剂,聚乙烯醇-1788(PVA-1788)为主分散剂,采用悬浮聚合法合成微球型聚丙烯酸酯类压敏胶.研究了聚合温度、引发剂用量对单体转化率和聚合凝聚率的影响,探讨了聚合单体对压敏胶粘接性能的影响,确定了微球型聚丙烯酸酯类压敏胶悬浮聚合最佳工艺:聚合温度85℃,引发剂用量0.6%(相对单体总质量),2-EHA、MMA、AA和2-HEA用量分别为聚合单体总质量的80%、4%、2%和4%.此时悬浮聚合单体转化率较高,聚合凝聚率较低,所合成的微球型聚丙烯酸酯类压敏胶微球平均粒径为52.77 μm,具有良好的反复粘贴性.  相似文献   

10.
用γ-(甲基丙烯酰氧)丙基三甲氧基硅烷对环氧树脂进行改性并将甲基丙烯酸,苯乙烯,丙烯酸丁酯接枝到环氧树脂上,合成有机硅改性水性环氧树脂,探讨制备的优化条件,红外光谱对产品进行表征。结果表明,优化条件是:乳化剂OP-10/SLS的配比为2/1,用量为单体总量的2.5%,环氧树脂占单体总量的47.96%,KH-570占单体总量13.22%,电解质NaHCO3占总量的0.23%,引发剂占总量的0.3%,油水比为1/2。IR检测结果表明,涂膜为有机硅、丙烯酸类单体和环氧发生自由基接枝共聚反应,乙烯基硅氧烷已接入到环氧分子骨架中。乳液及涂膜性能满足国标GB/T 20623-2006《建筑涂料用乳液》标准。  相似文献   

11.
研究了核─壳结构苯─丙乳液型可剥涂料的合成,并对合成中各种因素水与单体、St和MMA与BA的投料比,混合乳化剂用量及阴离子乳化剂的含量对聚合反应的稳定性影响进行了探讨,同时又对后两种因素对乳胶粒径和壳聚合中引发剂滴加速度对涂层附着力的影响作了探讨。  相似文献   

12.
核壳型阳离子丙烯酸酯乳液的合成   总被引:1,自引:0,他引:1  
采用核壳乳液聚合法,制得可用于木器底漆的核壳型阳离子丙烯酸酯乳液。考察了反应型乳化剂DADMAC、种子引发剂AIBA、功能单体GMA用量及乳化剂配比、软硬单体配比对乳液性能的影响。研究表明,反应型乳化剂DADMAC质量分数为单体总量的0.45%,种子引发剂质量分数为引发剂总量的0.4%,乳化剂配比m(核)∶m(壳)=1∶1,功能单体GMA质量分数为1.2%,软硬单体配比为m(MMA)∶m(St)∶m(BA)=18∶13∶10时可制得性能较佳的核壳型阳离子丙烯酸酯乳液。  相似文献   

13.
以叔碳单体-丙烯酸酯类单体共聚物为核,有机氟单体-丙烯酸酯类单体共聚物为壳.采用种子乳液聚合方法制得了核壳型叔碳氟碳共聚乳液。讨论了乳化剂量、引发剂量、反应温度、恒温时间等对乳液聚合的影响,并对乳液进行了接触角、透射电镜表征。结果表明:反应温度为85℃,恒温时间为2h,w(乳化剂)=3.5%,w(引发剂)=0.3%,制备的核壳型乳液性能较佳。  相似文献   

14.
通过直接酯化法和乳液聚合法分别合成了甲基丙烯酸十二酯单体及聚合物 ,测定了聚合物的特性粘数和粘均分子量。通过正交试验合成了具有较高粘均分子量 (Mη >1 0 7)的产物。分别测定了单体及聚合物的红外光谱。研究发现随着引发剂浓度的降低 ,还原剂的增加 ,乳化剂的增加 ,可提高产物的粘均分子量 ;反应时间的延长可同时提高产物的粘均分子量和产率。研究同时发现加入另一种乳化剂TritonX 1 0 0可稳定乳液 ,产物的粘均分子量从 1 .1 7× 1 0 7提高到 1 .75× 1 0 7。  相似文献   

15.
以有机氟单体、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸等为共聚单体,制备含氟丙烯酸酯乳液。探讨乳化剂种类、乳化剂量、反应温度、引发剂量、恒温时间和氟单体含量等各种工艺条件对乳液聚合性能的影响,并对制备的乳液进行傅立叶转换红外光谱、接触角等表征,结果表明在使用R-A/R-D复配乳化剂,乳化剂用量为0.24 wt%,反应温度为85℃,引发剂用量为0.3 wt%,恒温时间为2.5 h,氟单体含量为20 wt%时制备的乳液具有很高的转化率和较低的凝聚物含量,乳液转化率达到99%,凝聚物含量为0.19 wt%。制备的乳液涂膜后,乳胶膜具有很好的疏水性。  相似文献   

16.
以有机氟碳单体、丙烯酸酯等为共聚单体,引入交联剂制备微交联氟碳丙烯酸酯乳液。探讨交联剂、乳化剂、引发剂、氟单体等对乳液的影响。红外光谱分析结果表明氟碳单体已键接到聚合物主链上。在单体中加入交联剂二乙烯基苯(DVB),使用R-A/R-D复配乳化剂,n(R-A):n(R-D)=0.5.w(引发剂)=0.4%,w(氟单体)=20%时制备的乳液性能较好,转化率达到98.31%,凝聚物量0.42%,乳胶膜接触角达到77°,吸水率仅为8.89%。  相似文献   

17.
以丙烯酸酯类为主要单体通过乳液聚合方法合成阳离子聚合物乳液。分析了聚合工艺、乳化剂、引发剂、功能性单体、单体种类及软硬单体配比等因素对乳液性能的影响。研究结果表明:采用微乳液聚合工艺,阳离子乳化剂采用31527,用量为单体总质量的5%,阳离子乳化剂:非离子乳化剂=4:1(质量比),阳离子引发剂用量为单体质量的0.5%,硬单体为MMA,功能性单体采用NMAM时乳液具有较好的综合性能。  相似文献   

18.
以Span60和马来酸酐为原料,合成了一种马来酸酯类可聚合乳化剂(MPE),并将其应用于淀粉接枝丙烯酰胺乳液反相聚合反应中,探讨了引发剂浓度等反应条件对可聚合乳化剂的转化率以及接枝率等指标的影响。实验表明,以MPE作为乳化剂的淀粉接枝丙烯酰胺反应的最佳反应条件为:引发剂浓度为2.0×10-4mol/L;引发剂过硫酸铵与尿素配比为1.0∶1.5,接枝聚合反应的单体转化率可达到69.32%;MPE质量浓度为82 g/L较合适,最佳反应时间为4 h,反应温度为55℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号