首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising {LiMn1/3Ni1/3Co1/3O2 + LiMn2O4} is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.  相似文献   

2.
Degradation phenomena and inference of their underlying mechanisms during 2 C cycle aging in a cell design comprising {LiMn1/3Ni1/3Co1/3O2 + LiMn2O4} composite positive electrode are studied and reported in this work. We describe how aging phenomena in the cells were studied and incremental capacity analysis applied to infer cell degradation mechanisms in the cycle aging process. Two stages of degradation were observed in the life cycle under this aging regime. In the first stage, we conclude that loss of lithium inventory was the cause of capacity fade. As a result of such parasitic loss, the cell further suffered from loss of active materials in the second stage, in which the positive electrode kinetics was hampered and the capacity loss accelerated.  相似文献   

3.
Battery life estimations and state-of-health projections for commercial applications such as hybrid electric vehicles are highly dependent on accurate resistance monitoring. This study examined discharge/charge hysteresis (path dependency) effects on measuring resistance using two different lithium-ion cell chemistries. Cells were either discharged or charged to a target voltage, followed by a rest at open-circuit for electrochemical and thermal equilibration, immediately prior to a resistance measurement using a high-current pulse profile. Results show that a voltage hysteresis effect has an impact on cell resistance measurements, depending on the direction a target voltage is reached. Specifically, charging to a target condition yields different and less consistent resistance measurements compared to discharging to that same condition. Further, using slower rates to approach the target condition has a small impact on resistance on the discharge curve but does give a noticeable improvement on the charge curve. Unfortunately, slow charging and discharging are generally not practical for hybrid electric vehicle applications due to the rapidly changing power demands of the driver. Consequently, these results indicate that life estimates should be primarily based on resistances determined from pulses on the discharge curve.  相似文献   

4.
High power lithium-ion batteries need to exhibit long service life to meet targets of automotive applications. This article describes the deep investigation of the so-called VL6P cells, high power lithium-ion cells mass produced by Johnson Controls - Saft (JC-S), in order to understand the root causes of their aging. Cells aged by calendar and cycle life are investigated here compared to fresh cells. Among the results of the different analyses, the most significant is that more active lithium is detected in negative electrode after aging. This tends to indicate that effect of aging is due to increase of positive electrode limitation. Results of this investigation will allow JC-S to continue to improve life of the lithium-ion cells.  相似文献   

5.
One hundred seven commercially available, off-the-shelf, 1.2-Ah cells were tested for calendar life and CS cycle- and CD cycle-life using the new USABC PHEV Battery Test Manual. Here, the effects of temperature on calendar life, on CS cycle life, and on CD cycle life; the effects of SOC on calendar life and on CS cycle life; and the effects of rest time on CD cycle life were investigated. The results indicated that the test procedures caused performance decline in the cells in an expected manner, calendar < CS cycling < CD cycling. In some cases, the kinetic law changed with test type, from linear-with-time to about t2. Additionally, temperature was found to stress the cells more than SOC, causing increased changes in performance with increasing temperature.  相似文献   

6.
Self-discharging characteristics of negative electrodes with different carbon materials have been investigated by monitoring the open circuit potential (OCP), the capacity loss and the ac impedance change during the storage at different temperatures. The OCP change with the storage time reflected state-of-charge (SOC), which depended on both the carbon material and the storage temperature. Higher specific surface area of the material and higher storage temperature lead to higher self-discharging rate. The activation energy for self-discharging was estimated from the temperature dependence of the self-discharging rate. Although small difference was observed among the materials, the value of the activation energy suggests that the self-discharging reaction at each electrode is controlled by a diffusion process. Changes in the interfacial resistance with the storage time reflected the growth of so-called Solid Electrolyte Interphase (SEI) at carbon surface. The rate of SEI formation at lower temperature does not depend on the carbon material, but at higher storage temperature the rate on spherical graphite was much higher than those on the other carbon materials.  相似文献   

7.
We examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. Ancillary services such as frequency regulation are not considered here because only a small number of vehicles will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily profit values, while the economic losses associated with battery degradation were calculated based on data collected from A123 Systems LiFePO4/Graphite cells tested under combined driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the maximum annual profit with perfect market information and no battery degradation cost ranged from ∼US$140 to $250 in the three cities. If the measured battery degradation is applied, however, the maximum annual profit (if battery pack replacement costs fall to $5000 for a 16 kWh battery) decreases to ∼$10-120. It appears unlikely that these profits alone will provide sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction and use of peaking generators that may accrue to the owner, finding that these are similar in magnitude to the energy arbitrage profit.  相似文献   

8.
The stress in a separator is mainly caused by the lithium diffusion induced deformation in the electrodes and thermal expansion differential between the battery components. To compute the lithium concentration distribution and temperature change during battery operation, multi-physics models have been developed previously. In this work, a macro-scale model for a pouch cell was developed and coupled with the multi-physics models. In this model, the porous battery components were treated as homogenized media and represented with the effective properties estimated using the rule of mixtures. The stress analysis showed that the maximum stress in the separator always emerged at the area around the inner corner of the separator where it wrapped around the edge of an anode and when the lithium-ion battery was fully charged. Numerical simulations were also conducted to investigate the influences of some design adjustable parameters, including the effective friction, electrode particle radii and thickness of the separator, on the stresses in the separator. The results provided the reference conditions for the improvement of separator materials and the design of lithium-ion batteries.  相似文献   

9.
In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO4/graphite cells and shown to be in great agreement.  相似文献   

10.
This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li2MnO4 battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC.  相似文献   

11.
Safety is the key-feature of large-size lithium-ion batteries and thermal stability of the electrolytes is crucial. We investigated the thermal and flammability properties of mixed electrolytes based on the conventional ethylene carbonate-dimethyl carbonate (1:1 wt/wt)-1 M LiPF6 and the hydrophobic ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI). The results of thermogravimetric analyses and flammability tests of mixed electrolytes of different compositions are reported and discussed. An important finding is that though the mixtures with high contents of ionic liquid are more difficult to ignite, they burn for a longer time, once they are ignited.  相似文献   

12.
A silicon monoxide (SiO)-carbon composite prepared by ball-milling and pyrolysis is evaluated as an anode material for lithium-ion batteries. Electrochemical tests demonstrated that the first charge and discharge capacities of the material are about 1050 and 800 mAh g−1, respectively, with a first-cycle efficiency of 76%. The disproportionation reaction of pure SiO into Si and SiO2 during pyrolysis is confirmed by means of XRD and 29Si MAS NMR. The cycle performance of this material shows an excellent reversible capacity retention of 710 mAh g−1 over 100 cycles without any potential or capacity restrictions. This improved cycle performance is attributed to the stable microstructure, enhanced electrical contact afforded by the pyrolyzed carbon, and the amorphous phase transformation of the active material during cycling.  相似文献   

13.
A mathematical model was developed which simulates the self-discharge capacity losses in the carbon anode for a SONY 18650 lithium-ion battery. The model determines the capacity loss during storage on the basis of a continuous reduction of organic solvent and de-intercalation of lithium at the carbon/electrolyte interface. The state of charge, open circuit potential, capacity loss and film resistance on the carbon electrode were calculated as a function of storage time using different values of rate constant governing the solvent reduction reaction.  相似文献   

14.
There is much confusion and uncertainty in the literature concerning the useable power capability of batteries and ultracapacitors (electrochemical capacitors) for various applications. Clarification of this confusion is one of the primary objectives of this paper. The three approaches most often applied to determine the power capability of devices are (1) matched impedance power, (2) the min/max method of the USABC, and (3) the pulse energy efficiency approach used at UC Davis. It has been found that widely different power capability for batteries and ultracapacitors can be inferred using these approaches even when the resistance and open-circuit voltage are accurately known. In general, the values obtained using the energy efficiency method for EF = 90-95% are much lower than the other two methods which yield values corresponding to efficiencies of 70-75%. For plug-in hybrid and battery electric vehicle applications, the maximum useable power density for a lithium-ion battery can be higher than that corresponding to 95% efficiency because the peak power of the driveline is used less frequently and consequently charge/discharge efficiently is less important. For these applications, the useable power density of the batteries can be closer to the useable power density of ultracapacitors. In all cases, it is essential that a careful and appropriate measurement is made of the resistance of the devices and the comparisons of the useable power capability be made in a way appropriate for the application for which the devices are to be used.  相似文献   

15.
Natural graphite, which is used as an anode material in lithium-ion batteries, is thermally treated to improve its cycleability and reduce irreversible reactions with the electrolyte. Natural graphite is treated in air at 550 °C. The weight loss increases when the thermal oxidation time is increased. The BET surface area of the graphite decreases with increasing weight loss. The cycleability and efficiency of the thermally oxidized natural graphite improves significantly. Thermal oxidation decreases the irreversible capacity for side-reactions with the electrolyte on the first cycle. By contrast, it does not change the reversible capacity and rate capability. The improvement in the cycleability after thermal oxidation may be due to the removal of imperfect sites on the graphite.  相似文献   

16.
To investigate the effect of non-graphitic carbon coatings on the thermal stability of spherical natural graphite at elevated temperature, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements are performed. Data from DSC studies show that the thermal stability of the surface modified natural graphite electrode is improved. The surface modification results in a decrease in the BET surface specific area. An improvement in coulombic efficiency and a reduction in irreversible capacity are also observed for the carbon-coated natural graphite. X-ray diffraction analysis confirms that carbon coating alleviates the release of intercalated lithium from natural graphite at an elevated temperature and acts as a protective layer against electrolyte attack.  相似文献   

17.
Lithium-ion batteries are well-known to be plagued by a gradual loss of capacity and power which occur regardless of use and can be limiting factors in the development of emerging energy technologies. Here we show that separator deformation in response to mechanical stimuli that arise under normal operation and storage conditions, such as external stresses on the battery stack or electrode expansion associated with lithium insertion/deinsertion, leads to increased internal resistance and significant capacity fade. We find this mechanically induced capacity fade to be a result of viscoelastic creep in the electrochemically inactive separator which reduces ion transport via a pore closure mechanism. By applying compressive stress on the battery structure we are able to accelerate aging studies and identify this unexpected, but important and fundamental link between mechanical properties and electrochemical performance. Furthermore, by making simple modifications to the electrode structure or separator properties, these effects can be mitigated, providing a pathway for improved battery performance.  相似文献   

18.
Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections, i.e., roughness and out-of-flatness, and acts as an ohmic resistance at the electrode-collector joints. A custom-designed testbed is developed to conduct a systematic experimental study. ECR is measured at separable bolted electrode connections of a sample Li-ion battery, and a straightforward analysis to evaluate the relevant energy loss is presented. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered Li-ion battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. Consequently, a heat flow can be initiated from the electrodes towards the internal battery structure, which results in a considerable temperature increase and onset of thermal runaway. At sever conditions, heat generation due to ECR might cause serious safety issues, sparks, and even melting of the electrodes.  相似文献   

19.
Lithium difluoro (oxalate) borate (LiDFOB) is used as thermal stabilizing and solid electrolyte interface (SEI) formation additive for lithium-ion battery. The enhancements of electrolyte thermal stability and the SEIs on graphite anode and LiFePO4 cathode with LiDFOB addition are investigated via a combination of electrochemical methods, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), as well as density functional theory (DFT). It is found that cells with electrolyte containing 5% LiDFOB have better capacity retention than cells without LiDFOB. This improved performance is ascribed to the assistance of LiDFOB in forming better SEIs on anode and cathode and also the enhancement of the thermal stability of the electrolyte. LiDFOB-decomposition products are identified experimentally on the surface of the anode and cathode and supported by theoretical calculations.  相似文献   

20.
Ceramic-coated separators are prepared by coating the sides of a porous polyethylene membrane with nano-sized Al2O3 powder and hydrophilic poly(lithium 4-styrenesulfonate) binder. These separators exhibit an improved thermal stability at high temperatures without significant thermal shrinkage. Due to the high hydrophilicity of the polymer binder and large surface area of the small ceramic particles, the separators show good wettability in non-aqueous liquid electrolytes. By using the ceramic-coated separators, lithium-ion cells composed of a carbon anode and a LiCoO2 cathode are assembled and their cycling performance is evaluated. The cells are proven to have better capacity retention than for cells prepared with polyethylene membrane. It is expected that the ceramic-coated separator in this study can be potential candidate as a separator for rechargeable lithium-ion batteries that require thermal safety and good capacity retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号