首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing need for biomedical devices, required to face dysfunctions of natural tissues and organs caused by traumatic events, diseases and simple ageing, has drawn attention onto new materials, that could be able to positively interact with the human body. Among them, Bioglass® is firmly diffused in medical practice, thanks to its high bioactivity. In particular, due to its brittleness, it is mainly applied as a coating onto tougher bionert substrates; nevertheless, its bioactivity may be altered by the crystallization phenomena that could be involved by its processing. With the aim of reducing the tendency to crystallize, a new glass composition, inspired by the 45S5 Bioglass®, was formulated by substituting the sodium oxide with potassium oxide. A parallel characterization of the new glass and the 45S5 Bioglass® was carried out in order to define the effect of the potassium oxide on the thermal behaviour, mechanical properties and bioactivity. The results proved that the thermo-mechanical properties, as well as the in vitro response of the two glasses were comparable; however, preliminary tests to produce glass coatings by enamelling evidenced a higher stability of the new glass that, unlike the 45S5 Bioglass®, did not crystallize during processing.  相似文献   

2.
45S5 Bioglass® (45S5 BG) is a frequently applied Type A bioactive material, capable of forming an inherent bond to bone and soft tissue. Currently, applied melt‐derived bioactive glass powders (BG) exhibit particle sizes between a few to several hundred micrometers. Recent studies on nanometer‐sized bioactive glasses (nBGs), produced by bottom‐up methods like sol–gel processing or flame spray pyrolysis, have indicated their great potential for several biomedical applications. In this study, the feasibility of top‐down processing starting from bulk 45S5 BG by wet comminution in a stirred media mill was investigated. The products were assessed by in vitro hydroxycarbonate apatite (HCAp) formation in simulated body fluid, which is a marker for bioactive behavior. The study reveals the paramount influence of the used solvent for a successful top‐down processing: In comparison with the as‐received material bioactivity is lost for powders processed in water, preserved for comminution in ethanol and increased for powders processed using the alcohols n‐butanol, n‐pentanol, and n‐hexanol. It was also found that only for the latter solvents, the chemical composition of the glass is maintained during comminution. Flake‐like, slightly porous particles with specific surface areas of ~25–30 m2/g are obtained. Thus, the presented comminution approach offers a convenient technique to process 45S5 BG with enhanced bioactivity.  相似文献   

3.
The successful fabrication of hydroxyapatite‐bioactive glass scaffolds using honeycomb extrusion is presented herein. Hydroxyapatite was combined with either 10 wt% stoichiometric Bioglass® (BG1), calcium‐excess Bioglass® (BG2) or canasite (CAN). For all composite materials, glass‐induced partial phase transformation of the HA into the mechanically weaker β‐tricalcium phosphate (TCP) occurred but XRD data demonstrated that BG2 exhibited a lower volume fraction of TCP than BG1. Consequently, the maximum compressive strength observed for BG1 and BG2 were 30.3 ± 3.9 and 56.7 ± 6.9 MPa, respectively, for specimens sintered at 1300°C. CAN scaffolds, in contrast, collapsed when handled when sintered below 1300°C, and thus failed. The microstructure illustrated a morphology similar to that of BG1 sintered at 1200°C, and hence a comparable compressive strength (11.4 ± 3.1 MPa). The results highlight the great potential offered by honeycomb extrusion for fabricating high‐strength porous scaffolds. The compressive strengths exceed that of commercial scaffolds, and biological tests revealed an increase in cell viability over 7 days for all hybrid scaffolds. Thus it is expected that the incorporation of 10 wt% bioactive glass will provide the added advantage of enhanced bioactivity in concert with improved mechanical stability.  相似文献   

4.
A discussion of the effects of Bioglass® powder crystallisation on the in vitro bioactivity in simulated body fluid (SBF) is presented.Starting from Bioglass® powder, different glass–ceramics were obtained by thermal treatments between 580 °C and 800 °C, with variable crystallisation content (from 10 to 92 wt%). All samples (glass and glass–ceramics) showed apatite formation at their surface when immersed in SBF. In case of the glass and the samples with lowest crystallinity, the first step of apatite formation involved a homogenous dissolution followed by an amorphous calcium phosphate (CaP) layer precipitation. For the samples with a high crystallisation content, heterogeneous dissolution occurred. For the first time, the Stevels number of the amorphous phase is used to explain the possible dissolution of the crystalline phase present in materials with a similar chemical composition of the Bioglass®. All samples presented at 21 days of immersion in SBF B-type hydroxycarbonate apatite crystals.  相似文献   

5.
This paper reports on the experimental evaluation of a novel melt-quenched glass belonging to the CaO–MgO–SiO2–P2O5–Na2O–CaF2 system as potential material for biomedical applications in bone regeneration. The glass composition has been designed in the primary crystallisation field of pseudo-wollastonite in CaO–MgO–SiO2 ternary phase diagram. The rise of pH upon immersion in SBF solution was slower for the novel glass in comparison to 45S5 Bioglass®. Nevertheless, both glasses exhibited similar behaviour in early formation of crystalline apatite demonstrating their osteoinductive features. The in vivo investigations in rabbits demonstrated good compatibility between the glass and surrounding tissue along the whole implantation period with negligible adverse reactions. The clinical evaluation of glass has been conducted in accordance with the ethical guidelines and regulations.  相似文献   

6.
Biocomposite of bioactive glass (BG) with chitosan polymer (CH) is prepared by freeze-drying technique. Obtained material is investigated by using several physico-chemical methods. The XRD and FTIR show the interface bonding interactions between glass and polymer. The specific surface and porosity of biocomposite were determined. In vitro assays were employed to evaluate the effect of chitosan addition on the glass by studying the chemical reactivity and bioactivity of the BG and BG/CH biocomposite after soaking in a simulated body fluid (SBF). The obtained results show the formation of a bioactive hydroxycarbonate apatite (HCA) layer and highlight the bioactivity and the kinetics of chemical reactivity of bioactive glass, particularly after association with chitosan. The BG/CH biocomposite has excellent ability to form an apatite layer. Inductively coupled plasma-optical emission spectrometry (ICP-OES) highlights the negative effect of chitosan on the silicon release toward the SBF of bioactive glass when in vitro assays.  相似文献   

7.
Calcium phosphate invert glasses, which contain P2O72− and PO43− ions, have been prepared via the addition of a small amount of TiO2. The formation of bonelike calcium phosphate apatite on the surface of the phosphate invert glasses was examined in simulated body fluid (SBF) at a temperature of 37°C. Soaking for 20 d resulted in the deposition of leaflike apatite particles on 6CaO·3P2O5·TiO2 invert glass (based on molar ratio). The glass had much-greater chemical durability against SBF, in comparison with a metaphosphate glass; P ions were not dissolved excessively from the 6CaO·3P2O5·TiO2 glass, so the apatite formation was not suppressed.  相似文献   

8.
Apatite glass-ceramics are attractive for medical and dental applications, and fluorapatite glass-ceramics based on aluminosilicate glasses have been extensively studied. This study is the first study of chlorapatite glass-ceramics based on calcium chloride-containing Q2 bioactive phosphosilicate glasses. The crystallization behavior of oxychloride glasses is examined and compared with mixed oxychloride/fluoride and oxyfluoride glasses. The glass transition temperature decreased for all three series with increasing halogen content. On increasing the halogen content, there was an increasing tendency of the glasses to crystallize. The halogen-free glass surface crystallized to pseudowollastonite and an apatite. On incorporating a halide, the glasses exhibited largely bulk crystallization to a haloapatite. In the case of chloride, the glasses crystallized to chlorapatite. This is the first time to our knowledge that chlorapatite has been shown to crystallize from a glass. Chlorapatite is very attractive for medical applications because it converts to hydroxyapatite the mineral phase of tooth and bone on immersion in water.  相似文献   

9.
The effect of adding Fe2O3 on the bioactivity of cured ionomer cement was examined in simulated body fluid (SBF). Although the polyacrylic acid and Fe2O3 are known as inhibitors for apatite formation, results clearly show that exposure of the cement to the SBF lead to the formation of rough layers of carbonated-apatite (Volmer–Weber growth). Interestingly, the addition of Fe2O3 to the cement structure decreases the possibility of acid–base reaction in ionomer cements due to the improved chemical durability of the glass. Therefore, more calcium ions were released from the cement at the initial stage of soaking which plays an important role in forming the surface apatite layer by heterogeneous nucleation via the OH groups on the cement surface.  相似文献   

10.
《Ceramics International》2017,43(15):11676-11685
The higher melting temperature and longer soaking time during conventional glass melting route promoted the search for alternative in developing new bioactive glass (BG) composition with improved in fabrication temperature and melting time. The current project involved fabrication of new BG compositions based on SiO2-CaO-Na2O-P2O5 system via melt derived route. It was confirmed that all bioactive glass composition can be melted at temperature lower than 1400 °C. Formation of Si-O-Si (tetrahedral) functional group highlighted that silicate based glass was established as detected by Fourier transform infrared spectroscope (FTIR). BG bioactivity was performed by incubating the BG powder in Tris-buffer solution (pH 8) for 7, 14 and 21 days. In vitro test confirmed the apatite formation on the bioactive glass surface upon soaking in Tris-buffer solution with characteristic of carbonate group (C-O) and P-O band noticed from FTIR and present of crystalline peak observed in X-ray diffraction (XRD). Morphology of apatite formation on BG surface was observed using scanning electron microscope (SEM).  相似文献   

11.
The effects of adding Nb2O5 on the physical properties and glass structure of two glass series derived from the 45S5 Bioglass® have been studied. The multinuclear 29Si, 31P, and 23Na solid‐state MAS NMR spectra of the glasses, Raman spectroscopy and the determination of some physical properties have generated insight into the structure of the glasses. The 29Si MAS NMR spectra suggest that Nb5+ ions create cross‐links between several oxygen sites, breaking Si–O–Si bonds to form a range of polyhedra [Nb(OM)6?y(OSi)y], where 1 ≤ y ≤ 5 and M = Na, Ca, or P. The Raman spectra show that the Nb–O–P bonds would occur in the terminal sites. Adding Nb2O5 significantly increases the density and the stability against devitrification, as indicated by ΔT(Tx ? Tg). Bioglass particle dispersions prepared by incorporating up to 1.3 mol% Nb2O5 by replacing P2O5 or up to 1.0 mol% Nb2O5 by replacing SiO2 in 45S5 Bioglass® using deionized water or solutions buffered with HEPES showed a significant increase in the pH during the early steps of the reaction, compared using the rate and magnitude during the earliest stages of BG45S5 dissolution.  相似文献   

12.
This paper describes the behaviour of bioactive wollastonite materials containing Malaysian limestone and silica sand. Wollastonite, which is also known as calcium silicate (CaSiO3), is an industrial mineral composed of calcium, silicon and oxygen. Pseudowollastonite, which is a primary crystal of wollastonite, was synthesised via a solid-state reaction at a temperature of 1450 °C. The in-vitro bioactivity of wollastonite was examined by soaking it in simulated body fluid (SBF) solution for 1–7 days at 36.5 °C. The soaked wollastonite samples were characterised using XRD, SEM-EDX, FTIR and ICP analyses. Apatite particles precipitated on the surface of the wollastonite sample after the sample was soaked in the SBF. The XRD analysis indicated the presence of an increasing amount of the hydroxyapatite phase as the soaking time increased. The SEM and EDX analyses indicated the formation of granules of agglomerated apatite particles on the surface of the soaked wollastonite sample. During the formation of apatite, phosphate ions from the SBF solution were consumed. This process was confirmed by ICP, which revealed a decrease in ion concentration after the soaking process. The FTIR analysis indicated that the peaks of the phosphate ions increase when the apatite layer forms on the surface of the wollastonite sample. After the soaking process, a calcium deficient hydroxyapatite layer was observed on the wollastonite sample. The study concludes that wollastonite produced from Malaysian limestone and silica sand is bioactive and may be used as an implantable biomaterial.  相似文献   

13.
Mona A. Ouis 《SILICON》2011,3(4):177-183
Some glasses based on Hench’s patented bioglass have been prepared with ZnO replacing Na2O or CaO in order to investigate their bioactivity in the glassy state or after conversion to their glass-ceramic derivatives. In-vitro investigations of bioactivity of the prepared glass and their glass-ceramics derivatives were carried out by Infrared absorption spectra (IR) of the samples before and after immersion in simulated body fluid (SBF) for different time periods at 37 °C. An X-ray Diffraction (XRD) analysis technique was performed on the glass-ceramic samples to identify the crystalline phases formed during the controlled thermal treatment. Chemical corrosion experiments were also performed to evaluate the chemical behaviour of both glassy and the glass-ceramic derivatives towards SBF. The IR results showed that the amount of the apatite layer formed on the surface of the sample containing ZnO depends on the wt% of ZnO content. The X-ray results indicate that there are two phases formed: sodium calcium silicate and kilchoanite. Weight loss data were observed to change depending on the percent of ZnO and the role of housing of Zn2+ in the glass structure. Corrosion behaviour of glass-ceramic derivatives indicates higher durability than in the corresponding parent glasses as expected.  相似文献   

14.
BACKGROUND: This work focuses on combining electrospun biodegradable poly‐DL‐lactide (PDLLA) fibres and 45S5 Bioglass® for tissue engineering applications. RESULTS: A variety of fibrous structures were produced upon application of an electric field to a flowing solution of PDLLA (5 wt/v%) in di‐methyl carbonate (DMC). Electrospinning was achieved at an applied voltage of 8.5 kV for a fixed flow rate of 5 µL min?1. Scanning electron microscopy images of PDLLA fibres deposited on 45S5 Bioglass® sintered pellets revealed that the fibres had diameters in the range 100–200 nm, leading to increased surface roughness, as assessed by white light interferometry. Bioactivity studies on PDLLA fibre coated Bioglass® substrates were carried out in simulated body fluid (SBF) for 7, 14 and 28 days. It was found that mineralization of PDLLA fibres on 45S5 Bioglass® substrate (formation of hydroxyapatite) occurred after 7 days of immersion in SBF and full coverage of PDLLA fibres with HA nanocrystals was achieved after 14 days in SBF. CONCLUSION: The approach investigated represents a convenient method to develop a controlled mineralized fibrous topography on bioactive glass substrates for improved cell attachment, which can be exploited in bone tissue engineering applications. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
It is well known that bioactive glasses can cause a significant increase in pH due to the rapid release of calcium and/or sodium ions. Consequently, preconditioning of the glass is usually required prior to surgery to negate the effect of this sudden release of ions. However, preconditioning for several days is far from ideal and also preconditioning is not practical for novel organic/inorganic sol-gel hybrids currently being developed since the organic phase will start to hydrolyze and dissolve. This study describes a bioactive glass that dissolves without causing a significant change in pH from physiologically optimal values and requires no preconditioning prior to use. The bioactivity of the pH neutral glass, hydroxyapatite formation, and cellular responses, are measured and compared directly with results from archetypal 45S5 and S70C30 bioactive glasses. A hydroxyapatite layer was found to rapidly form (within 1 day) on the surface of the pH neutral glass upon reacting with simulated body fluid. In addition, improved cell compatibility was observed compared with 45S5 and S70C30 glasses. Therefore, this pH neutral glass has significant potential for bone repair applications.  相似文献   

16.
Glass of composition 40SiO2–20B2O3–30CaO–10M2O3 (M = Al, Cr, Y and La) were prepared by the splat quenching technique to investigate the effect of M2O3 on their bioactivity, structural and optical properties. Y2O3 and Cr2O3 containing glasses formed a crystalline hydroxyapatite (HA) layer after dipping in simulating body fluid (SBF) for 25 days. On the other hand, HA layer could not form in Al2O3 and La2O3 glasses. However, during soaking in SBF solution, these glasses exhibit higher dissolution rate, lower density and increased optical band gap as compared to unsoaked glasses. Their oxygen molar volume was also higher than for Y2O3 and Cr2O3 glasses. The change in composition affects the cross-link formation in the glass matrix and finally its durability and bioactivity in SBF. The results show that M2O3 plays an important role in controlling chemical durability and bioactivity of the glasses.  相似文献   

17.
Titania–hydroxyapatite composites were prepared by soaking compacts of a powder mixture consisting of crystalline titania and calcium carbonate (vaterite) to form apatite in simulated body fluid (SBF). The apatite crystal formed on compacts in SBF at 37 °C within 2 days. The apatite-forming ability of the mixtures was much higher than that of titania crystals such as anatase or rutile on their own. Calcium carbonate (vaterite), which has high solubility in the aqueous solution, plays an important role in the apatite formation; the dissolution is suggested to increase the supersaturation of the apatite in SBF. Formation of titanium hydroxide groups, which may induce the apatite formation, is drastically promoted on the powder-compacts by the soaking in SBF, independently of the structures of the titania crystals (anatase or rutile). The apatite formation on the compact of the titania–calcium carbonate (vaterite) powder mixture containing the anatase phase occurs in a shorter period than that on the one of titania (rutile)–calcium carbonate (vaterite). Crystalline titania (anatase phase) is suggested to be particularly effective in inducing the apatite nucleation.  相似文献   

18.
Providing structural support while maintaining bioactivity is one of the most important goals for bioceramic scaffolds, i.e. artificial templates which guide cells to grow in a 3D pattern, facilitating the formation of functional tissues. In the last few years, 45S5 Bioglass® has been widely investigated as scaffolding material, mainly for its ability to bond to both hard and soft tissues. However, thermal treatments to improve the relatively poor mechanical properties of 45S5 Bioglass® turn it into a glass-ceramic, decreasing its bioactivity. Therefore, the investigation of new materials as candidates for scaffold applications is necessary. Here a novel glass composition, recently obtained by substituting the sodium oxide with potassium oxide in the 45S5 Bioglass® formulation, is employed in a feasibility study as scaffolding material. The new glass, named BioK, has the peculiarity to sinter at a relatively low temperature and shows a reduced tendency to crystallize. In this work, BioK has been employed to realize two types of scaffolds. The obtained samples have been fully characterized from a microstructural point of view and compared to each other. Additionally, their excellent bioactivity has been established by means of in vitro tests.  相似文献   

19.
There is wide industrial interest in developing robust models of long-term (>100 years) glass durability. Archeological glass analogs, glasses of similar composition, and alteration conditions to those being tested for durability can be used to evaluate and inform such models. Two such analog glasses from a 1500-year-old vitrified hillfort near Uppsala, Sweden have previously been identified as potential analogs for low concentration Fe-bearing aluminosilicate nuclear waste glasses. However, open questions remain regarding the melting environment from which these historic glasses were formed and the effect of these conditions on their chemical durability. A key factor to answering the previous melting and durability questions is the redox state of Fe in the starting and final materials. Past work has shown that the melting conditions of a glass-forming melt may influence the redox ratio value (Fe+3/∑Fe), a measure of a glass's redox state, and both melting conditions and the redox ratio may influence the glass alteration behavior. Synthetic analogs of the hillfort glasses have been produced using either fully oxidized or reduced Fe precursors to address this question. In this study, the melting behavior, glass transition temperature, oxidation state, network structure, and chemical durability of these synthesized glass analogs is presented. Resulting data suggests that the degree of network connectivity as impacted by the oxidation state of iron impacted the behavior of the glass-forming melt but in this case does not affect the chemical durability of the final glass. Glasses with a lower degree of melt connectivity were found to have a lower viscosity, resulting in a lower glass transition temperature and softening temperature, as well as in a lower temperature of foam onset and temperature of foam maximum. This lower degree of network connectivity most likely played a more significant role in accelerating the conversion of batch chemicals into glass than the presence of water vapor in the furnace's atmosphere. Future work will focus on using the results from this work with outcomes from other aspects of this project to evaluate long-term glass alteration models.  相似文献   

20.
In this study, sol–gel derived glasses were prepared based on the following general formula: 25CaO–5MO–70SiO2 (M = Ca, Sr, Zn), and development of a calcium phosphate (CP) layer on their surfaces was studied by soaking them in a simulated body fluid (SBF) for different periods. The consequent formation of the CP layer and structural discrepancies of the formed layer of various glasses were studied by means of appropriate techniques such as X-ray diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy equipped with an energy dispersive system (EDS). The concentration of Ca, Si and M ions released from the samples into the SBF was measured by using inductively coupled plasma-atomic emission spectroscopy. The effect of compositional changes on proliferation and activity of osteoblastic cells was evaluated by employing rat calvaria-derived cells.According to the mechanism reported in the literature a SiO2-rich layer was initially formed on the surfaces of all glasses exposed to SBF. The results showed that CP formation ability of the glasses was strongly dependent on its chemical compositions. It was observed that the ability of calcium phosphate formation on the glass surfaces was inhibited by ZnO substitution, whereas the ternary CaO–SrO–SiO2 system exhibits progressively improved nanostructured carbonated apatite layer on the glass surfaces in comparison to binary CaO–SiO2 glass. The results of cell culture tests revealed that both Zn and Sr had stimulatory effect on cell responses; the rate of cell proliferation was enhanced by the former and alkaline phosphatase activity was improved by the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号