首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a systematic study into the influence of molecular structure on lubricant shear stress in elastohydrodynamic (EHD) contacts. An infrared emission technique has been employed to measure surface temperatures in an EHD contact and thence to determine the shear stress profile of lubricant films therein. The effect of structure on shear stress has been investigated by comparing the behaviour of a range of well-characterised, closely related, ester base fluids. Considerable variations in shear stress response to EHD conditions have been observed, depending upon the type and structure of the ester.  相似文献   

2.
The aim of this study was to investigate the elastohydrodynamic (EHD) properties of lubricant blends. Three base fluids of very similar viscosities, a polyalphaolefin, a diester and an alky lated aromatic, have been obtained and their EHD film thickness and traction behavior measured at a range of pressures. Blends of these fluids have been prepared and the influence of blending on film thickness and traction has been investigated. Traction measurements were conducted at film thicknesses between 100–200 nm and thermal analysis was incorporated to correct for in-contact shear heating. The blends showed a broadly linear relationship between the inlet pressure-viscosity coefficient and blend composition. Isothermal traction comparisons revealed that traction is not an additive property of lubricant blends.  相似文献   

3.
Effective axle oils must efficiently transfer torque from the drive‐train to the wheels, while maintaining low axle oil operating temperatures. Previous studies have shown that fluids, which form thicker elastohydrodynamic (EHD) films and have lower EHD friction, have higher torque transfer efficiencies (TE) and lower axle oil operating temperatures (OT). In general, oils with higher viscosities form thicker films and those with lower viscosities have lower EHD friction. Therefore, optimizing oil's rheological properties to maximize TE and minimize OT is difficult. In this paper, we examine two approaches to maintaining high TE while reducing OT. One approach is to minimize boundary friction since previous studies have shown that the boundary frictional properties of oils influence OT and not TE. A second approach is to more thoroughly examine the effect of rheology on film thickness and EHD friction. Film thickness and EHD friction are related to the high temperature high shear viscosity and pressure‐viscosity coefficient of oils. We have found that oils with high pressureviscosity coefficients and low high temperature high shear viscosities will form thick films and have low EHD friction. This optimized combination of physical parameters, along with lowering the boundary friction coefficient of axle oils, results in oils with high TE and low OT. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The behaviour of a range of model and commercial friction modifiers (FMs) has been evaluated under elastohydrodynamic (EHD) and boundary lubrication conditions. Using a series of long‐chain carboxylic acids, it has been shown that measured boundary friction coefficients (BFCs) decrease with increasing chain length, unsaturation level, temperature, and concentration. Base oil polarity was found to have no effect under these conditions. Commercial oleate esters in synthetic base fluids gave lower BFCs than nitrogen‐containing compounds under the same conditions. This difference was observed over a range of concentrations and temperatures. The friction performance of formulated oils under mixed and full‐film EHD conditions was found to be dependent on FM, base oil, and detergent type. Under boundary conditions, friction was found to vary with FM type, but the effect of changing the base oil and the detergent system was negligible.  相似文献   

5.
Results of mathematical modelling of elastohydrodynamic lubrication of rolling contacts are presented. Effects of dimensionless parameters such as speed, normal load, elliptical parameters and coefficient of limiting shear stress on shear stress distributions have been studied. Moreover, profiles on hydrodynamic pressure and film thickness in EHD contacts have been studied. It has been found that shear stress profiles on two contact surfaces in entraining direction are similar with each other in some way. Shear stresses of fluid film on contact surfaces vary with many factors, which reveals the mechanism of traction in elastohydrodynamically lubricated contacts.  相似文献   

6.
Lubricant viscosity is a key driver in both the tribological performance and energy efficiency of a lubricated contact. Elastohydrodynamic (EHD) lubrication produces very high pressures and shear rates, conditions hard to replicate using conventional rheometry. In situ rheological measurements within a typical contact are therefore important to investigate how a fluid behaves under such conditions. Molecular rotors provide such an opportunity to extract the local viscosity of a fluid under EHD lubrication. The validity of such an application is shown by comparing local viscosity measurements obtained using molecular rotors and fluorescence lifetime measurements, in a model EHD lubricant, with reference measurements using conventional rheometry techniques. The appropriateness of standard methods used in tribology for high-pressure rheometry (combining friction and film thickness measurements) has been verified when the flow of EHD lubricant is homogeneous and linear. A simple procedure for calibrating the fluorescence lifetime of molecular rotors at elevated pressure for viscosity measurements is proposed.  相似文献   

7.
Traction machines have been frequently used to study the rheological responses of lubricants in elastohydrodynamic lubrication (EHL) contacts. Fundamental properties are inferred from EHL traction measurements based on the average pressures and temperatures in the contact. This average approach leads to uncertainty in the accuracy of the results due to the highly nonlinear resonse of the fluid such as viscosity to both pressure and temperature. A non-averaging method is developed in this paper to study the elastic and plastic properties of traction fluids operating in EHL contacts at small slide-to-roll ratios. A precision line-contact traction rig is used to measure the EHL traction at a given oil temperature and Hertz pressure. By choosing a sensible pressure-property expression, the parameters of the expression can be determined through the initial slope and peak traction coefficient of the traction measurements. The elastic shear modulus and the limiting shear stress of the lubricant corresponding to a single pressure can then be calculated for a range of pressures and temperatures of practical interest. Two high-traction fluids are studied, and their elastic moduli and limiting shear stresses presented.  相似文献   

8.
Instant gear contact can be simulated with contacting discs, which provides steady operating conditions and eliminates most of the dynamics and manufacturing tolerances involved in real gears, resulting in an accurately controlled contact condition. A high-pressure twin-disc test device was developed, where loading and rolling velocity can be varied continuously. It is equipped with disc bulk temperature, mean contact resistance and friction moment measurements. The test discs were grinded transversal to the disc rolling direction with proper crowning corresponding to the real gear flank properties. The test device was applied by studying the friction behaviour against the slide-to-roll ratio at different contact pressures, rolling velocities and surface roughness. The measurements were performed using mineral base oil in the range of operation conditions often used in industrial gears. In general, the measured friction coefficient behaviour correlates with earlier published results and is logical with measured bulk temperature and mean contact resistance. The limiting shear stress of the lubricant has an essential role in friction behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The rheological properties of two lithium, two lithium complex, and two sodium greases, all with the most common NLGI grade two, have been investigated. The greases are based on a mineral and a synthetic oil. The apparatus used was a cone-and-plate rheometer and an impacting-ball apparatus. The impacting-ball apparatus used a steel ball, which impacted a lubricated sintered carbide plate, to measure the shear stress-pressure coefficient, γ, of the lubricant. At pressures found in elastohydrodynamic contacts this coefficient determined the limiting shear stress. The γ-value thus affects the coefficient of friction and consequently, lower γ-value means less friction. The results from the impacting-ball apparatus showed that the γ-value was lower for the greases with a synthetic base oil and that the lithium greases gave a lower γ-value than the corresponding base oils. Results from the cone-and-plate rheometer showed the characteristic shear thinning behaviour of the greases and the influence of shear history and temperature. The results from the cone-and-plate rheometer have also been fitted to a four parameter rheological model.  相似文献   

10.
采用分子模拟方法,研究不同压力、剪切速度、纳米颗粒浓度、温度条件下水基纳米液压液在动力学模型中的流动特性、承载能力和抗磨减摩特性。结果表明:纳米流体承载能力随纳米颗粒浓度的增加而增大;随着负载的增加,基础流体和纳米流体均会发生固化现象,但是纳米流体的过渡压力大于基础流体;壁面间摩擦力在一定范围内会随着纳米颗粒浓度的增大而减小,但过大的纳米颗粒浓度将导致摩擦加剧;纳米流体温度过高将导致壁面间摩擦力急剧升高;水基纳米液压液抗磨减摩机理主要在于纳米颗粒将滑动摩擦转化为滚动摩擦。  相似文献   

11.
Various types of rheometric apparatus have been developed to study and measure the shear stress behaviour of liquid lubricants. Elastohydrodynamic (EHD) lubrication is better studied with a high-pressure rheometer which allows independent control of temperature, pressure, and shear strain. With this, the authors propose an improved relation for the variation of viscosity through the glass transition, and present refined relations for shear modulus and limiting shear stress.  相似文献   

12.
The transition from ultra-thin lubrication to dry friction under high pressure and shear is studied using molecular dynamics: the quantity of lubricant in the confined film is progressively reduced toward solid-body contact. A quantized layer structure is observed for n-alkanes confined between smooth, wettable walls, featuring an alternation of well-layered, low friction configurations, and disordered ones, characterized by high friction, and heat generation. The molecular structure influences the ordering of the fluid and the resulting shear stress. In fact, Lennard-Jones fluids are characterized by low friction due to the absence of interlayer bridges, opposed to the always entangled states and high shear stresses for branched molecules. Surface geometry and wettability also affect the behavior of the confined lubricant. The presence of nanometer-scale roughness frustrates the ordering of the fluid molecules, leading to high friction states. Furthermore, local film breakdown can be observed when the asperities come into contact, with strong wall–wall interactions causing the maximum in shear stress. Finally, friction is limited to a small, constant value by the presence of smooth, non-wettable surfaces in the system due to the occurrence of wall slip.  相似文献   

13.
Friction in highly loaded lubricated contacts (where the pressure is greater than 1 GPa) may present a plateau at intermediate slide-to-roll ratio, known in the literature as the limiting shear stress (LSS) plateau. Its physical origins and its dependence to the operating conditions are still unclear, that is why predicting friction in such contacts still remains an issue. Apart from the nature of the lubricant, the two main parameters influencing the friction plateau value are pressure and temperature. The literature provides several empirical expressions of the LSS which either consider the pressure influence only, or both pressure and temperature but almost always with coupled terms. Therefore, the published LSS values derived from friction measurements can be considered as the macroscopic consequence of the influence of pressure and temperature but also of shear heating that occurs in sliding highly loaded contacts. In this paper, the contribution of each parameter was studied separately, i.e. through experiments accrued out under nominal isothermal conditions, but conducted at different temperatures and pressures on two lubricants: a synthetic ester (benzyl benzoate) and a turbine mineral oil. A new LSS model was derived, based only on the mechanical (i.e. shear) contribution to the LSS. Surprisingly, a simple linear dependence of the LSS with both pressure and temperature was found, revealing that the influence of each of the two parameters is decoupled from the other. As far as we know, this is the first time that such an uncoupled LSS model in pressure and temperature is reported. This work offers a better quantification of the response of lubricants submitted to very high pressure and high shear: it should help to improve friction prediction in highly loaded lubricated contacts.  相似文献   

14.
Accurately predicting the physical cutting process variables, e.g. temperature, velocity, strain and stress fields, plays a pivotal role for predictive process engineering for machining processes. These predicted field variables, however, are highly influenced by workpiece constitutive material model (i.e. flow stress), thermo-mechanical properties and contact friction law at the tool-chip-workpiece interfaces. This paper aims to investigate effects of friction modeling at the tool-chip-workpiece interfaces on chip formation process in predicting forces, temperatures and other field variables such as normal stress and shear stress on the tool by using advanced finite element (FE) simulation techniques.For this purpose, two distinct FE models with Arbitrary Lagrangian Eulerian (ALE) fully coupled thermal-stress analyses are employed to study not only the effects of FE modeling with different ALE techniques but also to investigate the influence of limiting shear stress at the tool-chip contact on frictional conditions, which was never done before. A detailed friction modeling at the tool-chip and tool-work interfaces is also carried by coupling sticking and sliding frictions. Experiments and simulations have been performed for machining of AISI 4340 steel using tungsten carbide tooling and the simulation results under increasing limit shear stress have been compared to experiments. The influence of limiting shear stress on the tool-chip contact friction was explored and validity of friction modeling approaches was examined. The results presented in this work not only provide a clear understanding of friction in FEM modeling of machining but also advance the process knowledge in machining.  相似文献   

15.
Analysis of flow and stresses in isothermal steady-state round–oval–round pass sequence for the production of round bars has been obtained from a flowline field solution. The velocity, strain-rate and stress components are derived from kinematic and static considerations together with the material constitutive law and friction boundary conditions. The results obtained show that the roll pressure and friction shear traction at the roll interface are fairly uniform and the normalized average roll pressure and friction shear factor have lower values than those for flat bar rolling at the same rolling conditions. Small variations in the rolls clearance gap have no appreciable effect on the roll load and torque. Increasing friction causes a significant increase in the roll load and torque. The analysis predicts pass grooves’ dimensions, roll load and torque for different values of height reductions.  相似文献   

16.
Tribological characterization of environmentally adapted ester based fluids   总被引:1,自引:0,他引:1  
Fundamental properties of six synthetic ester base fluids, suitable for the formulation of environmentally adapted lubricants, have been investigated. High pressure viscosity data for the test fluids were obtained through experimental measurements with a high pressure Couette rheometer. The temperature, pressure and viscosity data η(p, T) were parameterized against the Roelands pressure–viscosity equation. Thermal conductivity and specific heat capacity data were obtained using a transient hotwire method, and the EHD friction coefficient, γ, was obtained experimentally as well. The results from these measurements are reported, and the correlation between thermal properties, molecular structure, and the fluid rheology parameters, of the test fluids are discussed.  相似文献   

17.
Spikes  H. A.  Anghel  V.  Glovnea  R. 《Tribology Letters》2004,17(3):593-605
There is growing need for a reliable model of the rheological response of lubricants in elastohydrodynamic (EHD) contacts, not only to predict behaviour in full-film EHD conditions, but also for use in modelling mixed-film lubrication. One barrier to developing such a model is that measurements of friction actually represent averaged values over the whole, lubricated contact under study. However the fluid film conditions of temperature, pressure and strain rate generally vary over such contacts, which makes it difficult to determine constitutive shear-stress equations from friction measurements. This paper examines the various different techniques used to study the origins of EHD friction and the underlying film rheology. It then describes and applies a technique for obtaining the temperature rise maps of both solid surfaces in a rolling-sliding EHD contacts and thus shear-stress and friction maps. The work shows that the shear stress of the traction fluid studied increases approximately linearly with pressure and decreases approximately linearly with temperature in the high-pressure central region of EHD contacts.  相似文献   

18.
A method of numerically solving an elastohydrodynamic (EHD) contact of shaped rollers with allowance for misalignment of their axes in a plane perpendicular to the rolling direction is advanced. The mode of EHD lubrication is typical of such friction assemblies as roller bearings and gearings, in which the contacting elastic bodies are separated by a lubricant film and deformed under the action of an external load. Results of numerical modeling demonstrate the significant effect of the misalignment angle on the distribution of pressure and thickness of the lubricant film in the EHD contact and can be used further to analyze friction in a contact area and the stress tensor in a subsurface layer. The mathematical model of the EHD contact is described through nonlinear integro-differential equations and inequalities. The computational algorithm is based on Newton’s method.  相似文献   

19.
It is known that, under electrical or thermal stress, dielectric liquid produces gas. The performance of oil cooled, insulated, or impregnated electrical equipment such as transformers, cables, or capacitors, is affected by the presence of these small gaseous bubbles, which can give rise to partial discharges and to eventual insulation breakdown. Therefore, the gassing properties of an insulating liquid, i.e. its tendency to absorb or evolve gases, have been recognised as a factor of major importance in characterising dielectric liquids. The transition from gas absorption to gas evolution can occur at different temperatures and electrical stresses for different liquids. The effects of temperature, electrical stress, and ageing on gassing tendency have been well studied. Efforts have also been made to correlate the aromatic content of oil with a gassing tendency. However, such studies are limited to mineral insulating transformer oil. In the present work, an effort has been made to study the gassing characteristics of some common dielectric fluids, including linear alkyl benzene (LAB), silicone oil, and capacitor oil, along with some naphthenic and paraffinic transformer oils.  相似文献   

20.
The classical ElastoHydroDynamic (EHD) theory assumes a Newtonian lubricant and an isothermal operating regime. In reality, lubricating oils do not behave as perfect Newtonian fluids. Moreover, in most operating conditions of an engineering system, especially at high speeds, thermal effects are important and temperature can no longer be considered as constant throughout the system. This is one reason why there has always been a gap between numerical results and experimental data. This paper aims to show that this gap can be reduced by taking into consideration the heat generation that takes place in the contact and using appropriate rheological models. For this, a unique thermal ElastoHydrodynamic lubrication model is developed for both Newtonian and non-Newtonian lubricants. Pressure, film thickness and traction results are then compared to their equivalent isothermal results and experimental data. The agreement between thermal calculations and experiments reveals the necessity of considering thermal effects in EHD models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号