首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
绿色高性能无铅钎料的研究与发展   总被引:26,自引:3,他引:26  
铅和铅的化合物破坏环境,有害人体健康,国际上无铅的呼声日益高涨,美国,欧洲、日本等发达国家纷纷立法,电子产品无铅化的安排已经提到议事日程,各大公司纷纷展开无铅钎料的研究,并相继试验推出无铅产品,电子组装无铅化是一个系统工程,需要各个环节和全社会的配合,中国在激烈的国际竞争中要赢得市场,必须拥有自主知识产权的无铅钎料及产品,这需要全社会特别是相关企业的重视和全力配合。  相似文献   

2.
无铅钎料发展现状   总被引:36,自引:9,他引:36  
无铅钎料是绿色电子产品的一个重要组成部分。本文综述了近年来国际上无铅钎料的发展动态,并为国内企业如何适应这一趋势提出了建议。  相似文献   

3.
电迁移问题作为影响焊点可靠性的关键问题之一,容易导致焊点出现裂纹、丘凸和空洞等焊接缺陷.其失效机制有电流拥挤效应、焦耳热效应、极化效应和金属间化合物失效等.聚焦Sn-Ag-Cu系无铅钎料焊点的电迁移问题,介绍了这一领域电迁移的失效机制、影响因素和防止措施的研究现状,并展望了今后的研究发展趋势.  相似文献   

4.
A large number of lead-free Sn-Ag-Cu controlled collapse chip connection (C4) solder joints (∼100 μm in diameter) in flip-chip microelectronic packages were studied by electron backscatter diffraction (EBSD) in order to describe the statistical distribution of grain size and coincident site lattice boundaries associated with 60 deg twins in the Sn phase, as a function of silver content. It is shown that lower silver content results in smaller grains, and a lower propensity for grains to exhibit twinning symmetries. Indirect measurements of the creep properties of these joints were also obtained as a function of silver content, showing that, in the strain rate and temperature conditions that are the most relevant to the microelectronic industry, solder joints with low silver content are more susceptible to creep deformation.  相似文献   

5.
6.
提出了一种对微电子封装器件中焊点剪切强度进行测试的方法,可有效降低测试误差。利用该方法,对Sn—Ag—Cu无铅焊料分别在Cu基板和Ni-P基板上形成的焊点,经不同的热时效后的剪切强度进行了测量,并对断裂面的微观结构进行了研究。结果表明,新的剪切测试方法误差小,易于实施,焊点剪切强度、断裂面位置与焊料在不同基板界面上金属间化合物的形貌、成分有关。  相似文献   

7.
Sn-Ag-Cu焊料应用技术   总被引:2,自引:1,他引:1  
概述了NEC的Sn-Ag-Cu焊料的应用技术现状和引起剥离的解决方法。  相似文献   

8.
浅谈Sn-Ag-Cu无铅焊料的可靠性   总被引:3,自引:0,他引:3  
随着电子组装技术的发展,电子产品在制造过程中使用的焊料也随之更新换代,由原来的使用锡铅焊料改为使用无铅焊料,特别是Sn-Ag-Cu焊料,以满足WEEE和RoHS指令以及其他方面的要求。然而,使用无铅焊料却带来了一系列的问题,这些问题自然影响到产品的可靠性和使用寿命,因此,成为业界最关注的热点问题。文章主要讨论了Sn-Ag-Cu焊料的可靠性等问题。  相似文献   

9.
Excessive intermetallic compound (IMC) growth in solder joints will significantly decrease the reliability of the joints. IMC growth is known to be influenced by numerous factors during the component fabrication process and in service. It is reported that, other than temperature and holding time, stress can also influence the IMC growth behavior. However, no existing method can be used to study the effect of stress state on IMC growth in a controlled manner. This paper presents a novel method to study the effect of stress on interfacial IMC growth between Sn-Ag-Cu solder and a Cu substrate coated with electroless Ni immersion Au (ENIG). A C-ring was used and in-plane bending induced tensile and compressive stresses were applied by tightening the C-ring. Results revealed that in-plane compressive stress led to faster IMC growth as compared with in-plane tensile stress.  相似文献   

10.
采用Sn0.45A g0.68Cu亚共晶无铅钎料通过热浸焊获得铜接头,在-45~125℃的温度循环区间内对焊接接头进行200、400、600、800、1000周期高低温热冲击循环实验,分析了焊点的剪切强度变化,组织演变及界面IM C的生长规律。结果表明:焊点组织中弥散分布的Cu6Sn5相内部晶粒逐渐粗化长大,最后转变为圆形或者椭圆形;焊点界面IM C层厚度明显增厚,且由最初的细小扇贝状转变为大的波浪状,最终趋于平缓;焊点的剪切强度随热冲击循环周期的增加而急剧下降,经400周期的热冲击循环之后,焊点的剪切强度已下降了约22.5%,在400周期的热冲击循环后开始变得平缓,最后趋于稳定。  相似文献   

11.
The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.  相似文献   

12.
The effects of Cu as pad material and of the metallization of pad (with Sn) and component (with Ni) on the evolving microstructure of lead-free solder joints were studied. A solder paste with composition 95.5wt.%Sn-4.0wt.%Ag-0.5wt.%Cu was used. Partial dissolution of the Cu substrate led to a change in the overall composition of the solder, which caused a precipitation morphology different from the one expected regarding the initial composition. Kinetics of growth of the Cu6Sn5 phase, as particles in the bulk of the solder and as a reaction layer adjacent to the Cu pad, was studied in the temperature range 125–175°C.  相似文献   

13.
微电子封装无铅钎焊的可靠性研究   总被引:2,自引:0,他引:2  
本文阐述了微电子封装聚用无铅钎料的必要性。概述了无钎铅料的研究现状,最后着重分析讨论了微电子封装无铅钎焊的可靠性问题。  相似文献   

14.
The effects of minimal rare earth (RE) element additions on the microstructure of Sn-Ag-Cu solder joint, especially the intermetallic compounds (IMCs), were investigated. The range of RE content in Sn-Ag-Cu alloys varied from 0 wt.% to 0.25 wt.%. Experimental results showed that IMCs could be dramatically repressed with the appropriate addition of RE, resulting in a fine microstructure. However, there existed an effective range for the RE addition. The best RE content was found to be 0.1 wt.% in the current study. In addition to the typical morphology of Ag3Sn and Cu6Sn5 IMCs, other types of IMCs that have irregular morphology and uncertain constituents were also observed. The IMCs with large plate shape mainly contained Ag and Sn, but the content of Ag was much lower than that of Ag3Sn. The cross sections of Cu6Sn5 IMCs whiskers showed various morphologies. Furthermore, some eutectic-like structures, including lamellar-, rod-, and needle-like phases, were observed. The morphology of eutectic-like structure was related to the RE content in solder alloys. When the content of RE is 0.1 wt.%, the needle-like phase was dominant, while the lamellar structure prevailed when the RE content was 0.05 wt.% or 0.25 wt.%. It is suggested that the morphology change of the eutectic-like structure directly affects the creep properties of the solder joint.  相似文献   

15.
This paper is a study of the phase equilibria of the Sn-3.8Ag-0.7Cu alloy investigated by a differential cooling method. The difficulty in assessing phase equilibria of the Sn-Ag-Cu (SAC) system because of the insufficient resolution of conventional characterization techniques is solved by inducing preferential growth of a solid phase in a melt by holding the alloy at the solid-liquid phase-equilibrium field. Application of the technique to Sn-3.8Ag-0.7Cu with varying holding temperatures yielded results that the alloy is slightly off eutectic composition. The phase-formation sequence of the alloy during solidification was found to be Ag3Sn, β-Sn, and finally the ternary eutectic microstructure.  相似文献   

16.
Reliability and quality control of microelectronics depend on a detailed understanding of the complex thermomechanical properties of miniaturized lead-free solder joints. With the continuous reduction in size of modern electronic devices, including also the size of the solder joints themselves, mechanical constraint effects may become of importance for the reliability of the joints. In the present study stress relaxation tests in tensile mode were performed on model solder joints consisting of eutectic Sn-3.5Ag solder between Cu substrates. The gap size of the joints was varied between 750 μm and 150 μm in order to investigate the variation of the mechanical properties as a function of the gap size. As it turned out, stress relaxation was dramatically reduced when the solder gaps became smaller due to constraint effects already well known from earlier measurements of the tensile strength. By employing a traditional creep model, the stress exponents and the activation energies were derived and compared with available data in the literature. The consequences of these constraint effects for the case of thermomechanical fatigue are discussed.  相似文献   

17.
Growth of Sn and intermetallic compounds in Sn-Ag-Cu solder   总被引:2,自引:0,他引:2  
The microstructure of the Sn-Ag-Cu solder is examined by optical microscopy and scanning electron microscopy (SEM) for various compositions near the ternary eutectic for different cooling rates from the solder melt. Focus is on the size and orientation of Sn grains as indicated by cross-polarized, light optical microscopy, and pole figures from x-ray diffraction. We find that both composition and cooling rate have strong influences on Sn grain size, with Sn grain size increasing an order of magnitude as Cu concentration increases from 0% to 1.1%. Cyclic growth twinning, with twinning angles near 60°, is observed in Sn-Ag-Cu alloys near the composition Sn-3.9Ag-0.6Cu.  相似文献   

18.
The selection of soldering flux plays a critical role in promoting wetting and product reliability of printed circuit board assemblies. In this study, the effects of fluxes on the wetting characteristics of the Sn-3.0Ag-0.5Cu solder alloy on Cu substrates was researched by using various flux systems at different soldering temperatures. Because of the distinct characteristic of the lead-free solder—poor wettability—three kinds of fluxes [no-clean flux with high solid content (NCF), rosin mildly activated flux (RMA) and water-soluble flux (WSF)] were chosen for the wetting experiments. The wetting time and force were the evaluating indicators. The experimental observations indicated that the wettability clearly depended on the soldering temperature and flux system when using the same solder. Furthermore, the corrosion potential of flux residues was measured by surface insulation resistance (SIR) testing. Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to determine the contents of the flux residues and corrosion products.  相似文献   

19.
In this work, we present ball impact test (BIT) responses and fractographies obtained at an impact velocity of 500 mm/s on Sn-4Ag-0.5Cu, Sn-1Ag-0.5Cu, Sn-1Ag-0.5Cu-0.05Ni, Sn-1.2Ag-0.5Cu-0.05Ni, and Sn-1Ag-0.5Cu-0.05Ge package-level solder joints. The solder joints are bonded on substrate pads of either immersion tin (IT) or direct solder on pad (DSOP) surface finishes. Differences of BIT results with respect to multi-reflow are also reported. Taking the impact energy as an indication of board-level drop reliability of the solder joints, the BIT results indicate that better reliability can be achieved by adopting Sn-Ag-Cu solder alloys with low Ag weight contents as well as IT substrate pad finish rather than DSOP. Moreover, the addition of Ni or Ge to the solder alloy provides a large improvement; Ni alters the interfacial intermetallic compound (IMC) structure while Ge enhances the mechanical behavior of the bulk solder.  相似文献   

20.
李朝林 《半导体技术》2011,36(12):972-975
在无铅BGA封装工艺过程中,通过不同组分的BGA焊球合金与焊膏合金组合焊接、焊膏助焊剂活性剂不同配比及其不同再流焊接条件等实验,对焊料合金和助焊剂配比、再流焊接峰值温度、再流保温时间等参数变化,以降低BGA焊点空洞缺陷进行了研究。结果表明选用相同或相似的BGA焊球和焊膏合金组合焊接、选用活性强的焊膏、选择焊接保温时间较长均有助于降低BGA焊点空洞缺陷产生的几率和空洞面积,BGA焊点最佳再流焊接峰值温度为240℃,当峰值温度设置为250℃时,BGA焊点产生空洞缺陷几率会比240℃高出25%~30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号