首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以分散聚合合成的单分散聚苯乙烯微球作为种子微球,采用两步种子溶胀法制备多孔聚苯乙烯-二乙烯苯微球,并吸附玫瑰香精制备了香精多孔微球。利用马尔文激光粒度仪、比表面积孔径分布测定仪(BET)、热重分析仪(TGA)、扫描电镜(SEM)对种子微球和多孔微球的粒径、比表面积和孔结构、缓释性能、表观形貌进行了分析表征。结果表明:种球的粒径随着分散介质中无水乙醇体积分数的增大而增加;随着溶胀剂邻苯二甲酸二丁酯(DBP)用量的增加,多孔微球的平均粒径变大,分布变宽;随着交联单体二乙烯苯(DVB)用量增加,多孔微球平均粒径减小,分布变窄;以甲苯为致孔剂制备的多孔微球单分散性最好。当V(DBP):m(种球)=3:1,V(DVB):V(苯乙烯)=4:0时,制备的多孔微球的平均粒径约为4μm。以此多孔微球负载玫瑰香精,可以减缓香精的释放速率,提高起始分解温度,实现对香精的缓释。  相似文献   

2.
张林林 《硅酸盐通报》2015,34(10):2913-2918
聚合物模板法是实现无机材料高效制备的有效途径.本研究采用交联聚苯乙烯二乙烯基苯聚合物微球为模板,以有机硅源正硅酸四乙酯(TEOS)为前驱体,通过将硅溶胶沉积到多孔聚合物中形成聚合物和二氧化硅的混合物,再经过高温煅烧将聚合物模板去除的方法,可以方便地制备形貌可控的单分散多孔二氧化硅微球.利用扫描电子显微镜(SEM),傅里叶红外光谱仪(FHR),热重分析仪(TGA),X射线衍射仪(XRD),比表面积孔径分布测定仪(BET)对聚合物模板以及制备的二氧化硅微球进行表征.另外,对单分散多孔二氧化硅微球形成机理进行探讨.  相似文献   

3.
以微米级聚苯乙烯为种球,进行了两步种子溶胀法制备多孔聚合物微球的溶胀动力学研究,用光学显微镜、马尔文粒度分析仪、扫描电镜(SEM)和比表面积孔径分布测定仪(BET)等手段,对微球的溶胀形貌和孔结构进行了表征,优选出较好的溶胀条件是:以邻苯二甲酸二丁酯为溶胀剂,用超声乳化方式制备乳液,单位质量种球所用溶胀剂量为1.5mL,在35℃下10h即可完成溶胀,得到粒径分布良好的活化微球。研究发现,超声乳化分散方式的引入,可将溶胀时间由传统的24h缩短至10h,这可能是由于超声波的空穴效应所产生的巨大磁场加速了溶胀平衡状态建立的缘故。  相似文献   

4.
为了解决用传统方法制备微球粒径不均的缺点,实验使用自制的膜乳化装置,通过膜乳化法制备粒径在12~20μm、单分散系数小于20%的聚苯乙烯多孔微球.使用扫描电镜考察多孔微球的表面形貌及孔径.结果表明:膜孔径是影响微球粒径的决定性因素;适当的膜乳化压力、乳化剂和分散剂浓度是生产粒径均一微球的重要条件;在致孔剂DBP质量分数为20%时,微球的平均孔径为0.12μm.  相似文献   

5.
用分散聚合的方法制得单分散微米级聚苯乙烯微球(PS),以此聚苯乙烯微球作为种子,以邻苯二甲酸二丁酯为溶胀剂,苯乙烯为单体,二乙烯基苯为交联剂,甲苯为致孔剂,采用种子溶胀聚合的方法制得粒径分布较窄的多孔高交联的聚苯乙烯-二乙烯基苯微球(PS-DVB)。研究了交联剂与致孔剂的加入量对微球形貌、粒径及孔结构参数的影响。结果表明,所得多孔微球球形圆整,库尔特测得平均粒径为5.067~5.520μm,粒径分布窄,D90/D10为1.23~1.56,孔结构可控,并以此多孔微球作为反相色谱填料基质,理论塔板数每米可达6 000~15 000,可以用作高效液相色谱(HPLC)填料。  相似文献   

6.
宋子凡  韦俊  付曹飞  李翔  常振旗 《精细化工》2014,31(9):1057-1060
设计构建了可拆装的毛细管基微流体控制系统用于制备具有高度单分散性(CV值为3.78%)的苯乙烯(St)/二乙烯基苯(DVB)/三缩丙二醇双丙烯酸酯(TPGDA)多孔共聚物微球。所制备的单分散性多孔微球在直径250~1 550μm内通过调控分散相与连续相流量比及连续相黏度实现粒径精准可控。采用光引发聚合实现具有优良球形度微球(Max.D./Min.D.小于1.05)的快速在线制备,光引发聚合速率随着TPGDA在混合单体中质量的增加而增加。该研究提供了一种有效制备单分散性大粒径聚苯乙烯类多孔微球方法。  相似文献   

7.
以氯化胆碱-乙二醇低共熔溶剂为反应介质,采用沉淀法制备了锂离子电池负极材料一氧化锰/碳多孔微球,并用X射线衍射(XRD)、扫描电镜(SEM)、比表面积及孔径分析、恒电流充放电技术、电化学阻抗谱和循环伏安等手段,研究了碳酸氢铵与氯化锰物质的量比对一氧化锰/碳材料的形貌、结构及电化学性能的影响。结果表明,一氧化锰/碳材料的比表面积、孔径、孔体积、比容量、循环性能和倍率性能均随着碳酸氢铵与氯化锰物质的量比的增加而先增大后减小,碳酸氢铵与氯化锰物质的量比为2.0∶1时制备的一氧化锰/碳材料为多孔球体颗粒,粒径为0.5~2.5μm、平均孔径为11.5 nm、比表面积高达127.7 m2/g。一氧化锰/碳多孔微球材料在1C测试条件下的放电比容量为830 m A·h/g,循环50次后容量保持率接近100%,具有较高的比容量和较好的循环性能。  相似文献   

8.
载药多孔微球的吸附及缓释性能研究   总被引:1,自引:1,他引:0  
采用改进的二步种子溶胀聚合法制得粒径15μm内的多孔聚合物微球,以Parsol1789为模型组分,研究了多孔聚合物微球的活性物吸附能力以及体外释放性能,重点研究了多孔微球的比表面积、孔径和粒径对微球吸附和释放速度的影响.结果表明,比表面积大的多孔微球具有更高的平衡吸附量,由于Parsol1789分子体积较大,孔径对吸附量和释放速率都表现出了较大的影响,而随着微球粒径的减小,Parsol1789呈现更快的释放速度.从Parsol1789的释放结果可以看出,10 h后约释放负载活性物总质量的90%左右.  相似文献   

9.
《应用化工》2022,(6):1100-1104
苯乙烯(St)单体、过硫酸钾(KPS)和二乙烯基苯(DVB)通过无皂乳液聚合,在70℃下反应8 h,合成聚苯乙烯(PS)纳米粒子,PS磺化,得到磺化聚苯乙烯(SPS),通过正庚烷和乙醇溶胀后,水进入粒子内部发生相分离,形成多孔聚苯乙烯PS,在-30 k Pa负压条件下,负载缓蚀剂苯丙三氮唑(BTA)。考察单体量和反应时间对粒子形态的影响。结果表明,采用10 g St,0.05 g KPS,100 mL去离子水,反应2 h后加入0.05 g DVB,可以得到粒径合适、球形完整的PS纳米微球。PS微球磺化6 h,n(乙醇)∶n(水)∶n(正庚烷)=5∶5∶1,造孔10 h时,可得到形貌和孔径合适的多孔SPS纳米微球。SEM、TEM和FTIR表明,多孔SPS微球表面和内部负载上了一定量的缓蚀剂BTA。  相似文献   

10.
以垂直蒸发沉积法制备的聚苯乙烯(PS)胶态晶体为模板,采用溶胶–凝胶法制备多孔ZnO和TiO_2薄膜,分别考察其对罗丹明B(Rh B)溶液的光催化降解效果。使用扫描电子显微镜观察PS胶态晶体以及多孔ZnO和TiO_2薄膜的形貌,以紫外–可见吸收光谱仪表征光催化降解效果。结果表明:PS微球分散液浓度为0.025%时,胶态晶体为单层和多层结构,随着浓度增加至0.100%,胶态晶体呈现完善的多层结构;PS微球分散液浓度为0.100%、ZnO溶胶浓度为0.3 mol/L制备的多孔ZnO薄膜对Rh B降解效果较好;PS微球分散液浓度为0.025%、TiO_2溶胶浓度为0.1 mol/L获得的多孔TiO_2薄膜对Rh B降解效果较好。多孔ZnO薄膜对Rh B的降解效果优于多孔TiO_2薄膜。  相似文献   

11.
Partially porous poly(styrene‐divinylbenzene) (PS‐DVB) particles in the micron size range were prepared by the method of multistep swelling and polymerization involving the use of polymeric porogens. Polystyrene (PS) seeds prepared by dispersion polymerization were expanded in particle size by absorbing styrene and initiator, and then polymerized to form polymeric porogen particles. The newly synthesized PS chains served as the porogens of the PS‐DVB particles, resulting from the copolymerization of styrene and divinylbenzene in the swollen polymeric porogen particles. PS‐DVB particles with a specific surface area of up to 34 m2/g and a pore volume of up to 0.15 cm3/g were obtained. The average pore diameter of PS‐DVB particles was in the range of 15–24 nm. An increasing amount of toluene used in the copolymerization step increased the pore volume and specific surface area. Lipase from Candida rugosa was immobilized on the prepared PS‐DVB by physical adsorption. The optimum temperature for enzymatic activity was increased and the thermal deactivation of enzyme in organic solvent was slowed down by the immobilization. However, compared with soluble enzyme, the immobilized lipase on PS‐DVB retained a less activity after the first stage deactivation, suggesting a possible change in the conformation of enzyme molecule by immobilization. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 39–46, 2001  相似文献   

12.
Functional porous microspheres used for the slow release carrier of actives in cosmetics or pharmaceuticals were prepared by modified suspension polymerization of styrene (ST) with divinylbenzene (DVB) in the presence of toluene, cyclohexanol and heptane as porogenic diluents. The use of ultrasonic dispersion decreases the beads' size and improves the uniformity. The effects of the porogen mixture, DVB content and solvent extraction on the surface performance of the synthesized beads were studied. The microspheres were characterized by scanning electron microscopy (SEM) and BET surface area determination. It was found that a great proportion of the non-solvating porogen increases the pore diameter and the specific surface area. High DVB concentration also results in the great specific surface area and porosity. When the ratio of toluene/cyclohexanol is 1:2, DVB content is at the range of 40%-60% and methylene chloride was used as extractant, the beads with good spherical shape and pore size were obtained. The prepared porous microspheres were applied as active carriers and showed satisfactory slow release effect. Over 10h constantly sustained release was observed in vitro releasing test for hydroquinone-loaded microspheres. Great surface area promoted high concentration of released hydroquinone.  相似文献   

13.
Uniform macroporous particles carrying hydroxyl groups have been obtained in the size range 3–11.5 µm by seeded polymerization. For this purpose, uniform polystyrene particles in the size range 1.9–6.2 µm were used as seeds. The seed particles were successively swollen by dibutyl phthalate (DBP) and a monomer mixture comprising styrene, 2‐hydroxyethylmethacrylate (HEMA) and a crosslinker. Two different crosslinkers, divinylbenzene (DVB) and ethylene glycol dimethacrylate (EGDMA), were tested. Size distribution properties together with bulk and surface structures of the particles have been characterized by both scanning and transmission electron microscopy. While EGDMA provides uniform particles with a non‐porous surface, DVB produces uniform particles having a highly porous surface and interior. The comparison of FTIR and FTIR‐DRS spectra shows that the HEMA concentration is higher on the particle surface than within the particle interior. Seed latex size and monomer/seed latex ratios are identified as the most important variables affecting the final particles. Different seed latexes have been tried; the result is that highly macroporous particles with a sponge‐like pore structure both on the surface and in the particle interior have been obtained by use of the seed latex with the largest particles and the lowest molecular weight. An increase in the HEMA feed concentration leads to final particles with a non‐porous surface and a crater‐like porosity in the particle interior. The average pore size significantly decreases with increasing DBP/seed latex and monomer/seed latex ratios. © 2001 Society of Chemical Industry  相似文献   

14.
Uniform and macroporous polymer particles in the size range of 5–21 μm were prepared by a multistep seeded polymerization method. The uniform polystyrene particles in the size range of 1.9–7.5 μm were used as the seed particles in the preparation of macroporous beads. The seed particles with different sizes and molecular weights were produced by dispersion polymerization, by changing the type of dispersion medium and the initiator concentration. In the synthesis of macroporous particles, a two‐step swelling procedure was employed. The seed latexes were first swollen by a low molecular‐weight organic agent (i.e., dibutyl phthalate, DBP), then by a divinylbenzene–ethylvinylbenzene isomer mixture including an oil phase soluble initiator (i.e., benzoyl peroxide). The porous structure in the final beads was achieved by the polymerization of the monomer phase within the swollen seed particles including a mixture of linear polystyrene and DBP. The initiator concentration in the repolymerization step, the seed latex type (i.e., the diameter and the molecular weight of seed latex), DBP/seed latex, and the monomer/seed latex ratios were changed to achieve uniform polymer beads with different average sizes and pore structures. The average size, the size distribution, and the surface morphology of final beads were analyzed by Scanning Electron Microscopy. The internal structure of the beads were analyzed by Transmission Electron Microscopy. The results indicated that the average size of the final particles increased with increasing the seed latex diameter, DBP/seed latex, and monomer/seed latex ratios. The average pore size decreased with decreasing the molecular weight of the seed latex and increasing the DBP/seed latex and monomer/seed latex ratios. These tendencies were explained by the viscosity change of the porogen solution used in the repolymerization step. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2271–2290, 1999  相似文献   

15.
A highly crosslinked, monodispersed polystyrene (PS) particle was prepared by the seeded semicontinuous dispersion polymerization using ready‐made monodispersed PS seed particles. The effects of Styrene (in 2nd stage)/Styrene (in PS seed) ratio, addition point and feeding time of divinylbenzene (DVB), concentration of DVB and polymerization temperature on the particle size, size distribution and morphology of the resulting particles were investigated. Monodispersed PS particles with 15 wt % of the DVB were prepared at 1/1 in St/St ratio, In comparison, highly crosslinked monodispersed and smooth‐surfaced PS particles containing up to 70 wt % of the DVB were effectively prepared at 0/1. 5% weight loss of the PS particles determined by TGA occurred from 353.3 to 389.6°C and the degree of swellability in toluene decreased from 113 to 101% as the DVB concentration increased from 10 to 70 wt %, implying increased thermal stability and solvent resistance due to the increase of the crosslink density. This study demonstrates that the seeded semicontinuous process, primarily with the starved condition at the second stage, is an efficient way to obtain highly crosslinked, monodispersed PS particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Monodispersed polystyrene (PS) latices of the particle size ranging between 4 and 10 μm were prepared by a conventional dispersion polymerization technique using poly-(acrylamide) as a stabilizer. Styrene containing 2–20% of divinyl benzene (DVB) was subsequently polymerized on the surface of the latex by a seeded polymerization technique for the purpose of modifying the thermo-mechanical and chemical properties of the microspheres. The softening temperature during hot pressing and the resistance against the dissolution on swelling in toluene or methyl ethyl ketone increased with increasing amount of DVB. The state of seeded polymerized particles was revealed to depend more on the total amount than the composition of the monomer added. By using the present technique, it is possible to prepare chemically stable, monodispersed microspheres with their diameters and softening temperature varying from 4.5 to 12 μm and from 106 to 126°C, respectively, with a free combination by choosing the appropriate dispersion polymerization condition and the amount of DVB during subsequent seeded polymerization.  相似文献   

17.
In this article, the microparticles of polystyrene‐poly(styrene‐co‐sodium 4‐styrenesulfonate) (PS‐PSS) coated by polyaniline (PANI) were prepared and hollow PANI microspheres were further obtained by dissolving the core. First, surface‐sulfonated monodispersed PS was prepared by copolymerization of sodium 4‐styrenesulfonate (SSS) and styrene with dispersion polymerization method. Then aniline was polymerized on the surface of the surface‐sulfonated PS (PS‐PSS) by chemical oxidative polymerization. After purification, we prepared core‐shell (PS‐PSS)/PANI particles. Hollow PANI microspheres were prepared by dissolving the plastic PS core of the (PS‐PSS)/PANI particles in chloroform. The growth process of PANI on the surface of PS‐PSS particles was investigated and the hollow PANI microspheres were characterized. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The seeded batch dispersion polymerization with or without monomer absorption was compared with the batch polymerization and delayed addition by batch polymerization, to prepare the highly crosslinked, monodispersed polystyrene (PS) particles. The seeded batch polymerization was carried out under the variation of styrene (in second stage)/styrene (in PS seed) (St/St) ratio, divinylbenzene (DVB) concentration, and polymerization temperature using 1.9‐μm monodispersed PS seed particles. The experimental results imply that the seeded batch process is more efficient method that could avoid the sensitive particle nucleation step in the presence of the crosslinker than the batch and delayed addition processes. Without monomer absorption, 2.3‐μm uniform crosslinked PS particles with 7 wt % of the DVB were prepared in 1/1 (St/St) ratio. In comparison, with the monomer absorption, monodispersed and smooth‐surfaced PS particles containing 20 wt % of the DVB were formed. A total of 5% weight loss of the crosslinked PS particles determined by TGA occurred from 353.8 to 374.8°C, and the degree of swellability in toluene decreased from 150 to 104.5% with increasing the DVB concentration from 5 to 20 wt % because of the increase of the crosslink density of the particles. The seeded polymerization, especially through monomer absorption procedure, is a novel way to obtain highly crosslinked, monodispersed PS particles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号