首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the control problem of finite‐time attitude synchronization and tracking for a group of rigid spacecraft in the presence of environmental disturbances. A new fast terminal sliding manifold is developed for multiple spacecraft formation flying under the undirected graph topology. On the basis of the finite‐time control and adaptive control strategies, two novel decentralized finite‐time control laws are proposed to force the spacecraft attitude error dynamics to converge to small regions in finite time, and adaptive control is applied to reject the disturbance. The finite‐time convergence and stability of the closed‐loop system can be guaranteed by Lyapunov theory. Simulation examples are provided to illustrate the feasibility of the control algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper investigates the distributed robust finite‐time attitude containment control for multiple rigid bodies with uncertainties including parametric uncertainties, external disturbances, and actuator failures. Two novel types of distributed control laws are designed corresponding to two different cases, respectively, and both of them can drive the orientations of the followers into the convex hull formed by the orientations of leaders in a finite time. Simulation results show the effectiveness of the proposed design. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies adaptive attitude synchronization of spacecraft formation with possible time delay. By introducing a novel adaptive control architecture, decentralized controllers are developed, which allow for parameter uncertainties and unknown external disturbances. Based upon graph theory, Lyapunov stability theory and time-delay control theory, analytical tools are also provided. A distinctive feature of this work is to address the adaptive attitude synchronization with unknown parameters and coupling time delay in a unified theoretical framework, with general directed information flow. It is shown that arbitrary desired attitude tracking and synchronization with respect to a given reference can be attained. Simulation results are provided to demonstrate the effectiveness of the obtained results.  相似文献   

4.
This paper investigates the finite‐time attitude stabilization problem for rigid spacecraft in the presence of inertia uncertainties and external disturbances. Three nonsingular terminal sliding mode (NTSM) controllers are designed to make the spacecraft system converge to its equilibrium point or a region around its equilibrium point in finite time. In addition, these novel controllers are singularity‐free, and the presented adaptive NTSM control (ANTSMC) laws are chattering‐free. A rigorous proof of finite‐time convergence is developed. The proposed ANTSMC algorithms combine NTSM, adaptation and a constant plus power rate reaching law. Because the algorithms require no information about inertia uncertainties and external disturbances, they can be used in practical systems, where such knowledge is typically unavailable. Simulation results support the theoretical analysis.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates attitude maneuver control issues of a flexible spacecraft with pyramid‐type single gimbaled control moment gyroscopes (SGCMGs) as the actuator. The LuGre friction model is adopted to precisely describe the nonlinearity of the SGCMG gimbal friction. Aiming at restraining the adverse effects of the friction existed in SGCMG on the attitude control performance, a robust adaptive attitude controller is proposed, and projection‐based adaptive laws are presented to estimate the friction parametric uncertainties and the bound of friction nonlinearity. By treating the flexible mode coupling effect and external disturbances as lump disturbances, the inertia uncertainties and the bound of the lump disturbances are also estimated and compensated simultaneously to reduce their adverse effect on the system. With the Lyapunov technique, the states of flexible spacecraft control system are proved to be uniformly ultimately bounded. Numerical simulations demonstrate the effectiveness of the proposed scheme.  相似文献   

6.
The attitude stabilization problem for rigid spacecraft in the presence of inertial uncertainties, external disturbances, actuator saturations, and actuator faults is addressed in this paper. First, a novel fast terminal sliding mode manifold is designed to avoid the singularity problem while providing high control ability. In addition, fast terminal sliding mode control laws are proposed to make the spacecraft system trajectory fast converge onto the fast terminal sliding mode surface and finally evolve into small region in finite time, which cannot be achieved by the previous literatures. Based on the real sliding mode context, a practical adaptive fast terminal sliding mode control law is presented to guarantee attitude stabilization in finite time. Also, simulation results are presented to illustrate the effectiveness of the control strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a novel adaptive sliding mode control (SMC) method for synchronization of non-identical fractional-order (FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances, finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller (ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization (PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.   相似文献   

8.
针对再入段高超飞行器非线性动力学模型存在不确定性和干扰,基于奇异摄动理论提出了鲁棒变结构+动态逆内外环解耦控制方法.为避免在线实时求逆,控制系统的外环基于简化的模型设计自适应滑模变结构控制律,通过反馈干扰观测器在线估计广义干扰量,实现角度的跟踪和闭环系统的稳定,抑止外来干扰.强耦合的姿态动力学内环采用动态逆跟踪角速度指...  相似文献   

9.
This paper addresses the specified‐time control problem for control‐affine systems and rigid bodies, wherein the specified‐time duration can be designed in advance according to the task requirements. By using the time‐rescaling approach, a novel framework to solve the specified‐time control problem is proposed, and the original systems are converted to the transformation systems based on which the specified‐time control laws for both control‐affine systems and rigid bodies are studied. Compared with the existing approaches, our proposed specified‐time control laws can be derived from the known stabilization control laws. To our best knowledge, it is the first time that transformation system–based specified‐time control framework for control‐affine system and rigid body dynamics is proposed. To further improve the convergence performance of specified‐time control, a finite‐time attitude synchronization control law for rigid bodies on rotation matrices is proposed, and thereby, the finite‐time–based specified‐time control law is designed eventually. In the end, numerical simulations and SimMechanics experiments are provided to illustrate effectiveness of the theoretical results.  相似文献   

10.
In this paper, the finite-time attitude tracking control problem for rigid spacecraft with external disturbances and inertia uncertainties is addressed. First, a novel fast nonsingular terminal sliding mode surface (FNTSMS) without any constraint is designed, which not only avoids the singularity problem, but also contains the advantages of the nonsingular terminal sliding mode (NTSM) and the conventional sliding-mode together. Second, the proposed FNTSM control laws (FNTSMCLs) by employing FNTSMS associated with adaptation provide finite-time convergence, robustness, faster, higher control precision. The proposed FNTSMCLs in light of novel adaptive control architecture are continuous. Thus, they are chattering-free. Finally, simulation results are presented to illustrate effectiveness of the control strategies. In addition, digital simulations of satellite Hubble Space Telescope (HST) are presented to verify the practical feasibility of the reorientation/ slew maneuvers mission.  相似文献   

11.
针对四旋翼无人机姿态控制中模型不完整、部分参数和扰动不确定的问题,提出了一种基于神经网络的自适应控制方法,采用RBF神经网络对无人机姿态动力学模型中不确定和扰动部分进行学习,设计了以类反步法为基础,包含反馈控制和神经网络控制的自适应控制器,实现了对未知动态的准确逼近,解决了传统控制方法中过于依赖精确模型的问题。同时设计了神经网络的权值自适应律,实现了控制过程中的在线学习和调整,并且通过李雅普诺夫方法证明了闭环系统的稳定性。仿真结果表明,在存在较大扰动的情况下,上述控制器可得到很好的控制效果,可以实现误差的快速收敛,具有较好的鲁棒性和自适应性。  相似文献   

12.
This paper addresses attitude synchronization and tracking problems in spacecraft formation in the presence of model uncertainties and external disturbances. A decentralized adaptive sliding mode control law is proposed using undirected interspacecraft communication topology and analyzed based on algebraic graph theory. A multispacecraft sliding manifold is derived, on which each spacecraft approaches desired time‐varying attitude and angular velocity while maintaining attitude synchronization with the other spacecraft in the formation. A control law is then developed to ensure convergence to the sliding manifold. The stability of the resulting closed‐loop system is proved by application of Barbalat's Lemma. Simulation results demonstrate the effectiveness of the proposed attitude synchronization and tracking methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
针对一类系统不确定及受外界干扰的分数阶混沌系统,本文首先将分数阶微积分应用到滑模控制中,构造了一个具有分数阶积分项的滑模面.针对系统不确定及外界干扰项,基于分数阶Lyapunov稳定性理论与自适应控制方法,设计了一种滑模控制器以及分数阶次的参数自适应律,实现了两不确定分数阶混沌系统的同步控制,并辨识出相应误差系统中不确定项及外界干扰项的边界.在分数阶系统稳定性分析中使用的分数阶Lyapunov稳定性理论及相关函数都可以很好地运用到其它分数阶系统同步控制方法中.最后数值仿真验证了所提控制方法的可行性与有效性.  相似文献   

14.
This paper presents an adaptive nonsingular terminal sliding mode approach for the attitude control of near space hypersonic vehicles (NSHV) in the presence of parameter uncertainties and external disturbances. Firstly, a novel nonsingular terminal sliding surface is developed and its finitetime convergence is analyzed. Then, an adaptive nonsingular terminal sliding mode control law is proposed, which is chattering free. In the proposed approach, all parameter uncertainties and external disturbances are lumped into one term, which is estimated by an adaptive uncertainty estimation for eliminating the boundary requirement needed in the conventional control design. Subsequently, stability of the closed-loop system is proven based on Lyapunov theory. Finally, the proposed approach is applied to the attitude control design for NSHV. Simulation results show that the proposed approach attains a satisfactory performance in the presence of parameter uncertainties and external disturbances.   相似文献   

15.
In this study, a dynamical adaptive integral backstepping variable structure control (DAIBVSC) system based on the Lyapunov stability theorem is proposed for the trajectory tracking control of a nonlinear uncertain mechatronic system with disturbances. In this control scheme, no prior knowledge is required on the uncertain parameters and disturbances because it is estimated by two types of dynamical adaptive laws. These adaptive laws are integrated into the dynamical adaptive integral backstepping control and variable structure control (VSC) parts of the DAIBVSC. The dynamical adaptive law in the dynamical adaptive integral backstepping control part updates parametric uncertainties, while the other in the VSC part adapts upper bounds of non‐parametric uncertainties and disturbances. In order to achieve a more robust output tracking and better parameter adaptation, the control system is extended by one integrator and sliding surface is augmented by an integral action. Experimental evaluation of the DAIBVSC is conducted with respect to performance and robustness to parametric uncertainties. Experimental results of the DAIBVSC are compared with those of a traditional VSC. The proposed DAIBVSC exhibits satisfactory output tracking performance, good estimation of the uncertain parameters and can reject disturbances with a chattering free control law. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
黄成  王岩  周乃新 《控制与决策》2017,32(10):1789-1795
针对航天器交会对接模拟系统的姿态同步和位置跟踪控制问题,在存在外界扰动和系统不确定性的情况下,基于改进的快速非奇异终端滑模面和改进的自适应律,采用双闭环控制结构分别设计内环和外环有限时间姿态位置耦合控制器.所提出的自适应律不仅能有效地抑制扰动和不确定性且能保证控制器是连续的.李雅普诺夫理论推导和仿真结果表明,所提出的控制方法能保证系统内环和外环跟踪误差的有限时间稳定性和准确收敛性.  相似文献   

17.
针对带有模型不确定和外部干扰的两旋翼飞行器,提出一种基于快速终端滑模面的有限时间自适应姿态控制方法,保证两旋翼飞行器对期望姿态角度的有限时间跟踪。构造快速终端滑模面,并设计分段连续函数避免滑模变量求导产生的奇异值问题。在此基础上,设计有限时间姿态控制器,并设计系统不确定上界的自适应更新律,抵消模型不确定性和外部干扰的影响。经李雅普诺夫方法证明滑模变量、姿态角误差、角速度误差等闭环信号最终一致有界,且有限时间收敛至平衡点邻域,收敛时间与系统状态变量初始值有关。最后,采用了矩形波和 曲线作为设定信号,设计相应的跟踪实验,并在两旋翼飞行器平台上验证所提控制方法的有效性,且分析双曲正切函数对系统控制输入影响,经实验测试其可减少系统颤振现象。  相似文献   

18.
In this paper, an adaptive fixed‐time fault‐tolerant control scheme is presented for rigid spacecraft with inertia uncertainties and external disturbances. By using an inverse trigonometric function, a novel double power reaching law is constructed to speed up the state stabilization and reduce the chattering phenomenon simultaneously. Then, an adaptive fixed‐time fault‐tolerant controller is developed for the spacecraft with the actuator faults, such that the fixed‐time convergence of the attitude and angular velocity could be guaranteed, and no prior knowledge on the upper bound of the lumped uncertainties is required anymore in the controller design. Comparative simulations are provided to illustrate the effectiveness and superior performance of the proposed scheme.  相似文献   

19.
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.   相似文献   

20.
Adaptive control of rigid body satellite   总被引:1,自引:1,他引:0  
The minimal controller synthesis (MCS) is an extension of the hyperstable model reference adaptive control algorithm. The aim of minimal controller synthesis is to achieve excellent closed-loop control despite the presence of plant parameter variations, external disturbances, dynamic coupling within the plant and plant nonlinearities. The minimal controller synthesis algorithm was successfully applied to the problem of decentralized adaptive schemes. The decentralized minimal controller synthesis adaptive control strategy for controlling the attitude of a rigid body satellite is adopted in this paper. A model reference adaptive control strategy which uses one single three-axis slew is proposed for the purpose of controlling the attitude of a rigid body satellite. The simulation results are excellent and show that the controlled system is robust against disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号