首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and pharmacological studies have shown that glutamatergic receptors can be divided in two classes (refer to Table 1): ionotropic receptors including N-methyl-D-aspartate (NMDA) and non-NMDA subtypes, and the G-protein-coupled metabotropic receptors (glutamate metabotropic receptor). There are two types of non-NMDA receptors: the AMPA/low-affinity kainate receptor type (the AMPA receptors) activated by a specific agonist, the alpha-amino-3-hydroxy-5-methyl-4-iso-xalone propionate (AMPA), and the high affinity kainate receptors. The vestibular nuclei neurones are endowed with all these types of glutamatergic receptors, which fits well with the fact that various afferents, including the primary vestibular afferents, most probably use glutamate or aspartate as a neurotransmitter. This article is aimed at summarising several past studies of our group and some more recent data obtained in the in vitro whole-brain preparation concerning the NMDA receptors of the central vestibular neurones. In that process, we will detail also many valuable studies of other groups that had been devoted to the same topic.  相似文献   

2.
Glutamate, the major excitatory neurotransmitter in the central nervous system, activates three different receptors that directly gate ion channels, namely receptors for AMPA (alpha-amino-3-hydroxy-5-methyl isoxozole propionic acid), NMDA (N-methyl-D-aspartate), and kainate, a structural analogue of glutamate. The contribution of AMPA and NMDA receptors to synaptic transmission and plasticity is well established. Recent work on the physiological function of kainate receptors has focused on the hippocampus, where repetitive activation of the mossy-fibre pathway generates a slow, kainate-receptor-mediated excitatory postsynaptic current (EPSC). Here we show that high-intensity single-shock stimulation (of duration 200 microseconds) of primary afferent sensory fibres produces a fast, kainate-receptor-mediated EPSC in the superficial dorsal horn of the spinal cord. Activation of low-threshold afferent fibres generates typical AMPA-receptor-mediated EPSCs only, indicating that kainate receptors may be restricted to synapses formed by high-threshold nociceptive (pain-sensing) and thermoreceptive primary afferent fibres. Consistent with this possibility, kainate-receptor-mediated EPSCs are blocked by the analgesic mu-opiate-receptor agonist Damgo and spinal blockade of both kainate and AMPA receptors produces antinociception. Thus, spinal kainate receptors contribute to transmission of somatosensory inputs from the periphery to the brain.  相似文献   

3.
Antagonists at the ionotropic non-NMDA [AMPA (amino-methyl proprionic acid)/kainate] type of glutamate receptors have been suggested to possess several advantages compared to NMDA (N-methyl-D-aspartate) receptor antagonists, particularly in terms of risk/benefit ratio, but the non-NMDA receptor antagonists available so far have not fulfilled this promise. From a large series of pyrrolyl-quinoxalinedione derivatives, we selected six new competitive non-NMDA receptor antagonists. The basis of selection was high potency and selectivity for AMPA and/or kainate receptors, high in vivo potency after systemic administration, and an acceptable ratio between neuroprotective or anticonvulsant effects and adverse effects. Pharmacological characteristics of these novel compounds are described in this study with special emphasis on their effects in the kindling model of temporal lobe epilepsy, the most common type of epilepsy in humans. In most experiments, NBQX and the major antiepileptic drug valproate were used for comparison with the novel compounds. The novel non-NMDA receptor antagonists markedly differed in their AMPA and kainate receptor affinities from NBQX. Thus, while NBQX essentially did not bind to kainate receptors at relevant concentrations, several of the novel compounds exhibited affinity to rat brain kainate receptors or recombinant kainate receptor subtypes in addition to AMPA receptors. One compound, LU 97175, bound to native high affinity kainate receptors and rat GluR5-GluR7 subunits, i.e. low affinity kainate binding sites, with much higher affinities than to AMPA receptors. All compounds potently blocked AMPA-induced cell death in vitro and, except LU 97175, AMPA-induced convulsions in vivo. In the kindling model, compounds with a high affinity for GluR7 (LU 97175) or compounds (LU 115455, LU 136541) which potently bind to AMPA receptors and low affinity kainate receptor subunits were potent anticonvulsants in the kindling model, whereas the AMPA receptor-selective LU 112313 was the least selective compound in this model, indicating that non-NMDA antagonists acting at both AMPA and kainate receptors are more effective in this model than AMPA receptor-selective drugs. Three of the novel compounds, i.e. LU 97175, LU 115455 and LU 136541, exerted potent anticonvulsant effects without inducing motor impairment in the rotarod test. This combination of actions is thought to be a prerequisite for selective anticonvulsant drug action.  相似文献   

4.
We have previously shown that injection of the inflammatory irritant and small-fiber excitant mustard oil (MO) into the temporomandibular joint (TMJ) region can reflexively induce a prolonged increase in the activity of both digastric and masseter muscles in rats. It is possible that peripheral excitatory amino acid (EAA) receptors play a role in this effect, because MO-evoked increases in jaw muscle activity are attenuated by preapplication of the noncompetitive NMDA receptor antagonist MK-801 into the TMJ region. In the present study the EAA receptor agonists glutamate, NMDA, kainate, and AMPA were applied locally to the TMJ region. Jaw muscle responses similar to those evoked by MO application to the TMJ region were achieved with glutamate, NMDA, AMPA, and kainate. Repeated application of glutamate, NMDA, or AMPA at intervals of 30 min evoked responses in the ipsilateral jaw muscles that were of comparable magnitude. Co-application of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (0.5 micromol) significantly reduced the magnitude of the glutamate- and NMDA-evoked ipsilateral jaw muscle responses without affecting responses evoked by AMPA. In contrast, co-application of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (1 nmol) significantly reduced the magnitude of the glutamate- and AMPA-evoked ipsilateral jaw muscle responses without affecting responses evoked by NMDA. This evidence suggests that both NMDA and non-NMDA EAA receptor types are located within the TMJ region and may contribute to jaw muscle activity that can be reflexively evoked from the TMJ region.  相似文献   

5.
Electrophysiological and pharmacological methods were used to examine the role of glutamate in mediating the excitatory and inhibitory responses produced by the N2v rasp phase neurons on postsynaptic cells of the Lymnaea feeding network. The N2v --> B3 motor neuron excitatory synaptic response could be mimicked by focal or bath application of -glutamate at concentrations of >/=10(-3) M. Quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were potent agonists for the B3 excitatory glutamate receptor (10(-3) M), whereas kainate only produced very weak responses at the same concentration. This suggested that non-N-methyl--aspartate (NMDA), AMPA/quisqualate receptors were present on the B3 cell. The specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M) blocked 85% of the excitatory effects on the B3 cell produced by focal application of glutamate (10(-3) M), confirming the presence of non-NMDA receptors. CNQX also blocked the major part of the excitatory postsynaptic potentials on the B3 cell produced by spontaneous or current-evoked bursts of spikes in the N2v cell. As with focal application of glutamate, a small delayed component remained that was CNQX insensitive. This provided direct evidence that glutamate acting via receptors of the non-NMDA, AMPA/quisqualate type were responsible for mediating the main N2v --> B3 cell excitatory response. NMDA at 10(-2) M also excited the B3 cell, but the effects were much more variable in size and absent in one-third of the 25 B3 cells tested. NMDA effects on B3 cells were not enhanced by bath application of glycine at 10(-4) M or reduction of Mg2+ concentration in the saline to zero, suggesting the absence of typical NMDA receptors. The variability of the B3 cell responses to NMDA suggested these receptors were unlikely to be the main receptor type involved with N2v --> B3 excitation. Quisqualate and AMPA at 10(-3) M also mimicked N2v inhibitory effects on the B7 and B8 feeding motor neurons and the modulatory slow oscillator (SO) interneuron, providing further evidence for the role of AMPA/quisqualate receptors. Similar effects were seen with glutamate at the same concentration. However, CNQX could not block either glutamate or N2v inhibitory postsynaptic responses on the B7, B8, or SO cells, suggesting a different glutamate receptor subtype for inhibitory responses compared with those responsible for N2v --> B3 excitation. We conclude that glutamate is a strong candidate transmitter for the N2v cells and that AMPA/quisquate receptors of different subtypes are likely to be responsible for the excitatory and inhibitory postsynaptic responses.  相似文献   

6.
L-glutamate, the neurotransmitter of the majority of excitatory synapses in the brain, acts on three classes of ionotropic receptors: NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and kainate receptors. Little is known about the physiological role of kainate receptors because in many experimental situations it is not possible to distinguish them from AMPA receptors. Mice with disrupted kainate receptor genes enable the study of the specific role of kainate receptors in synaptic transmission as well as in the neurotoxic effects of kainate. We have now generated mutant mice lacking the kainate-receptor subunit GluR6. The hippocampal neurons in the CA3 region of these mutant mice are much less sensitive to kainate. In addition, a postsynaptic kainate current evoked in CA3 neurons by a train of stimulation of the mossy fibre system is absent in the mutant. We find that GluR6-deficient mice are less susceptible to systemic administration of kainate, as judged by onset of seizures and by the activation of immediate early genes in the hippocampus. Our results indicate that kainate receptors containing the GluR6 subunit are important in synaptic transmission as well as in the epileptogenic effects of kainate.  相似文献   

7.
Excitatory amino acids (EAA) acting on N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors play an important role in synaptic transmission in the spinal cord. Quantitative autoradiography and physiological experiments suggest that NMDA receptors are localized mainly in lamina II while kainate and AMPA receptors are found on both dorsal and ventral horn neurons. However the cell types expressing EAA receptors and their laminar distribution is not known. We have used a cobalt uptake method to study the morphology and distribution of spinal cord neurons expressing AMPA, kainate, or NMDA excitatory amino acid receptors in the lumbar enlargement of the rat spinal cord. The technique involved superfusion of hemisected spinal cords of 14 day-old rat pups in vitro with excitatory amino acid receptor ligands in the presence of CoCl2. Cobalt has been shown to enter cells through ligand-gated ion channels in place of Ca2+. Cells which accumulated cobalt ions following activation by ionotropic excitatory amino acid receptors were visualized histochemically. The cobalt uptake generated receptor-specific labeling of cells, as the NMDA receptor antagonist D-(-)-2-amino-(5)-phosphonovaleric acid (D-AP-5) (20 microM) blocked the NMDA, but not kainate-induced cobalt uptake. The kainate-induced cobalt labeling was reduced by the non-selective excitatory amino acid receptor antagonist kynurenic acid (4 mM). Passive opening of the voltage-gated Ca(2+)-channels by KCl (50 mM) did not result in cobalt uptake, indicating that cobalt enters the cells through ligand-gated Ca(2+)-channels. AMPA (500 microM), kainate (500 microM), or NMDA (500 microM) each induced cobalt uptake with characteristic patterns and distributions of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal perikarya while NMDA-induced uptake was the lowest. AMPA and kainate, but not NMDA superfusion, resulted in cobalt labeling of glial cells. Our results show that the cobalt uptake technique is a useful way to study the morphology and distribution of cells expressing receptors with ligand-gated Ca2+ channels.  相似文献   

8.
Extracellular recordings were made from the magnocellular neurones of the red nucleus (mRN) in anaesthetised cats. A study was made of the effects of selective excitatory amino acid receptor antagonists on excitatory monosynaptic responses evoked from the sensorimotor cortex (SMC) and cerebellar interpositus nucleus (IPN). Iontophoretically applied CNQX and NBQX antagonised both SMC and IPN responses whereas, D-AP5 inhibited the SMC response but was ineffective to the IPN. At currents that selectively antagonised NMDA responses, CPPene had no effect on either SMC or IPN responses. 7-chlorokynurenate inhibited both SMC and IPN responses but required currents that antagonised both AMPA and NMDA responses and was therefore acting in a non-selective manner. Iontophoretically applied glycine was inhibitory to both agonist and synaptic responses, whilst D-serine potentiated NMDA responses but did not enhance monosynaptic responses of the SMC. However in the presence of either 7-chlorokynurenate or high currents of CNQX that reduced the SMC synaptic activation of the mRN neurones, D-serine attenuated the inhibitory action of these antagonists. It is concluded that monosynaptic responses from the SMC are mediated by both NMDA and non-NMDA receptors whereas the monosynaptic responses evoked from the IPN are mediated only by non-NMDA receptors. The lack of effect of CPPene is consistent with the postulate that two NMDA receptor subtypes are present on mRN neurones.  相似文献   

9.
Nitrous oxide (N2O; laughing gas) has been a widely used anesthetic/analgesic since the 19th century, although its cellular mechanism of action is not understood. Here we characterize the effects of N2O on excitatory and inhibitory synaptic transmission in microcultures of rat hippocampal neurons, a preparation in which anesthetic effects on monosynaptic communication can be examined in a setting free of polysynaptic network variables. Eighty percent N2O occludes peak NMDA receptor-mediated (NMDAR) excitatory autaptic currents (EACs) with no effect on the NMDAR EAC decay time course. N2O also mildly depresses AMPA receptor-mediated (AMPAR) EACs. We find that N2O inhibits both NMDA and non-NMDA receptor-mediated responses to exogenous agonist. The postsynaptic blockade of NMDA receptors exhibits slight apparent voltage dependence, whereas the blockade of AMPA receptors is not voltage dependent. Although the degree of ketamine and Mg2+ blockade of NMDA-induced responses is dependent on permeant ion concentration, the degree of N2O blockade is not. We also observe a slight and variable prolongation of GABAA receptor-mediated (GABAR) postsynaptic currents likely caused by previously reported effects of N2O on GABAA receptors. Despite the effects of N2O on both NMDA and non-NMDA ionotropic receptors, glial glutamate transporter currents and metabotropic glutamate receptor-mediated synaptic depression are not affected. Paired-pulse depression, the frequency of spontaneous miniature excitatory synaptic currents, and high-voltage-activated calcium currents are not affected by N2O. Our results suggest that the effects of N2O on synaptic transmission are confined to postsynaptic targets.  相似文献   

10.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy.  相似文献   

11.
12.
Glutamate-gated ion channels mediate excitatory synaptic transmission in the central nervous system and are involved in synaptic plasticity, neuronal development and excitotoxicity (5,24). These ionotropic glutamate receptors were classified according to their preferred agonists as AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), KA (kainate), and NMDA (N-methyl-D-aspartate) receptors [Trends Pharmacol. Sci., 11 (1990) 25-33]. The present study of NMDA receptor channels expressed in acutely isolated spinal dorsal horn (DH) neurons of young rat reveals that they are subject to modulation through the adenylate cyclase cascade. Whole-cell voltage-clamp recording mode was used to examine the effect of adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) on the responses of DH neurons to NMDA. Whole-cell current response to NMDA was enhanced by 8 Br-cAMP, a membrane permeant analog of cAMP or by intracellular application of cAMP or catalytic subunit of PKA.  相似文献   

13.
It is widely accepted that excitatory amino acid transmitters such as glutamate are involved in the initiation of seizures and their propagation. Most attention has been directed to synapses using NMDA receptors, but more recent evidence indicates potential roles for ionotropic non-NMDA (AMPA/kainate) and metabotropic glutamate receptors as well. Based on the role of glutamate in the development and expression of seizures, antagonism of glutamate receptors has long been thought to provide a rational strategy in the search for new, effective anticonvulsant drugs. Furthermore, because glutamate receptor antagonists, particularly those acting on NMDA receptors, protect effectively in the induction of kindling, it was suggested that they may have utility in epilepsy prophylaxis, for example, after head trauma. However, first clinical trials with competitive and uncompetitive NMDA receptor antagonists in patients with partial (focal) seizures, showed that these drugs lack convincing anticonvulsant activity but induce severe neurotoxic adverse effects in doses which were well tolerated in healthy volunteers. Interestingly, the only animal model which predicted the unfavorable clinical activity of competitive NMDA antagonists in patients with chronic epilepsy was the kindling model of temporal lobe epilepsy, indicating that this model should be used in the search for more effective and less toxic glutamate receptor antagonists. In this review, results from a large series of experiments on different categories of glutamate receptor antagonists in fully kindled rats are summarized and discussed. NMDA antagonists, irrespective whether they are competitive, high- or low-affinity uncompetitive, glycine site or polyamine site antagonists, do not counteract focal seizure activity and only weakly, if at all, attenuate propagation to secondarily generalized seizures in this model, indicating that once kindling is established, NMDA receptors are not critical for the expression of fully kindled seizures. In contrast, ionotropic non-NMDA receptor antagonists exert potent anticonvulsant effects on both initiation and propagation of kindled seizures. This effect can be markedly potentiated by combination with low doses of NMDA antagonists, suggesting that an optimal treatment of focal and secondarily generalized seizures may require combined use of both non-NMDA and NMDA antagonists. Given the promising results obtained with novel AMPA/kainate antagonists and glycine/NMDA partial agonists in the kindling model, the hope for soon having potentially useful glutamate antagonists for use in epileptic patients is increasing.  相似文献   

14.
The principal excitatory neurotransmitter in the vertebrate central nervous system, L-glutamate, acts on three classes of ionotripic glutamate receptors, named after the agonists AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxalole-4-propionic acid), NMDA (N-methyl-D-aspartate) and kainate. The development of selective pharmacological agents has led to a detailed understanding of the physiological and pathological roles of AMPA and NMDA receptors. In contrast, the lack of selective kainate receptor ligands has greatly hindered progress in understanding the roles of kainate receptors. Here we describe the effects of a potent and selective agonist, ATPA ((RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid) and a selective antagonist, LY294486 ((3SR, 4aRS, 6SR, 8aRS)-6-((((1H-tetrazol-5-yl) methyl)oxy)methyl)-1, 2, 3, 4, 4a, 5, 6, 7, 8, 8a-decahydroisoquinoline-3-carboxylic acid), of the GluR5 subtype of kainate receptor. We have used these agents to show that kainate receptors, comprised of or containing GluR5 subunits, regulate synaptic inhibition in the hippocampus, an action that could contribute to the epileptogenic effects of kainate.  相似文献   

15.
1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.  相似文献   

16.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. The ionotropic glutamate receptors are classified into two groups, NMDA (N-methyl-D-aspartate) receptors and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors. The AMPA receptor is a ligand-gated cation channel that mediates the fast component of excitatory postsynaptic currents in the central nervous system. Here we report that AMPA receptors function not only as ion channels but also as cell-surface signal transducers by means of their interaction with the Src-family non-receptor protein tyrosine kinase Lyn. In the cerebellum, Lyn is physically associated with the AMPA receptor and is rapidly activated following stimulation of the receptor. Activation of Lyn is independent of Ca2+ and Na+ influx through AMPA receptors. As a result of activation of Lyn, the mitogen-activated protein kinase (MAPK) signalling pathway is activated, and the expression of brain-derived neurotrophic factor (BDNF) messenger RNA is increased in a Lyn-kinase-dependent manner. Thus, AMPA receptors generate intracellular signals from the cell surface to the nucleus through the Lyn-MAPK pathway, which may contribute to synaptic plasticity by regulating the expression of BDNF.  相似文献   

17.
Properties of glutamatergic synaptic transmission were investigated by simultaneously voltage-clamping a pair of connected bipolar cells and cells in the ganglion cell layer (GLCs) in the newt retinal slice preparation. Activation of the Ca2+ current in a single bipolar cell was essential for evoking the glutamatergic postsynaptic current in the GLC. Depolarization for as short as 15 msec activated both NMDA and non-NMDA receptors. On the other hand, analysis of the spontaneous glutamatergic synaptic currents of GLCs revealed that these currents consisted of mainly non-NMDA receptor activation with little contribution from NMDA receptors. This suggests that non-NMDA receptors of GLCs are clustered in postsynaptic membrane regions immediately beneath the release sites of bipolar cells and that NMDA receptors have lower accessibility to the released transmitter than non-NMDA receptors. Glutamate that is spilled over from the release sites may activate the NMDA receptors. When a prolonged depolarizing pulse was applied to a bipolar cell, the response induced by non-NMDA receptors was limited greatly by their fast desensitization, whereas NMDA receptors were able to produce a maintained response. The relationship between the pulse duration applied to the bipolar cell and the integrated charge of the response evoked in the GLC was almost linear. Therefore, we propose that both non-NMDA and NMDA receptors cooperate to transfer the graded photoresponses of bipolar cells proportionally to GLCs.  相似文献   

18.
1. By measuring the apparent reversal potential (aErev) of kainate- and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA)-evoked currents associated with changes in extracellular Ca2+ concentration ([Ca2+]e), we have been able to identify embryonic dorsal horn neurons grown in tissue culture that express Ca(2+)-permeable non-N-methyl-D-aspartic acid (NMDA) receptors. 2. The relative expression of Ca(2+)-permeable and Ca(2+)-impermeable non-NMDA receptors varies from cell to cell. This was evident from the range of a ErevS observed for kainate-evoked currents in a 0 mM [Na+]e, 10 mM [Ca2+]e bath. Under these conditions, aErev ranged from -96 to -21 mV, suggesting that the percentage of the non-NMDA receptors on each neuron that are Ca(2+)-permeable is variable. 3. To determine the extent to which the variability in aErev is due to variable receptor expression rather than experimental variability, we compared the effects of changes in [Ca2+]e on kainate-evoked currents and NMDA-evoked currents on the same cells. Assuming that all of the NMDA receptors on each neuron have a similar Ca2+ permeability, this approach provides an index of the sensitivity of our assay system. The reversal potential of NMDA-evoked currents in 10 mM [Ca2+]e ranged from -30 to -7 mV, whereas on the same population of neurons, the aErev of kainate-evoked currents ranged from -92 to -40 mV. 4. The rectification properties of the non-NMDA currents were generally linear or outwardly rectifying in normal bath solution. When the PCa/PCs ratio in 0 mM [Na+]e, 10 mM [Ca2+]e bath solution was assessed as a function of the rectification index in standard bath, a poor correlation was found between Ca2+ permeability and the rectification index. 5. The aErev of kainate-evoked currents was similar to that of cyclothiazide-enhanced AMPA-evoked currents observed on the same cells (-66.5 +/- 18.4 and -64.0 +/- 13.9 mV, mean +/- SD, respectively). This suggests that kainate is primarily activating the AMPA receptor and that the majority of non-NMDA receptors on embryonic dorsal horn neurons in culture are high-affinity AMPA receptors. 6. Immunocytochemical evidence suggests that the AMPA receptor subunits GluR1-4 are expressed to a variable degree from cell to cell in our cultures. We found evidence for low levels of expression of the kainate receptor subunits GluR5-7. The immunocytochemical observations support the physiological data indicating that much of the kainate-evoked current recorded in our experiments can be accounted for by kainate activation of AMPA receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The participation of NMDA and non-NMDA receptors in domoic acid-induced neurotoxicity was investigated in cultured rat cerebellar granule cells (CGCs). Neurons were exposed to 300 microM L-glutamate or 10 microM domoate for 2 h in physiologic buffer at 22 degrees C followed by a 22-h incubation in 37 degrees C conditioned growth media. Excitotoxic injury was monitored as a function of time by measurement of lactate dehydrogenase (LDH) activity in both the exposure buffer and the conditioned media. Glutamate and domoate evoked, respectively, 50 and 65% of the total 24-h increment in LDH efflux after 2 h. Hyperosmolar conditions prevented this early response but did not significantly alter the extent of neuronal injury observed at 24 h. The competitive NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid and the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) reduced glutamate-induced LDH efflux totals by 73 and 27%, respectively, whereas, together, these glutamate receptor antagonists completely prevented neuronal injury. Domoate toxicity was reduced 65-77% when CGCs were treated with competitive and noncompetitive NMDA receptor antagonists. Unlike the effect on glutamate toxicity, NBQX completely prevented domoate-mediated injury. HPLC analysis of the exposure buffer revealed that domoate stimulates the release of excitatory amino acids (EAAs) and adenosine from neurons. Domoate-stimulated EAA release occurred almost exclusively through mechanisms related to cell swelling and reversal of the glutamate transporter. Thus, whereas glutamate-induced injury is mediated primarily through NMDA receptors, the full extent of neurodegeneration is produced by the coactivation of both NMDA and non-NMDA receptors. Domoate-induced neuronal injury is also mediated primarily through NMDA receptors, which are activated secondarily as a consequence of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor-mediated stimulation of EAA efflux.  相似文献   

20.
Although profound hypothermia has been used for decades to protect the human brain from hypoxic or ischemic insults, little is known about the underlying mechanism. We therefore report the first characterization of the effects of moderate (30 degrees C) and profound hypothermia (12 degrees to 20 degrees C) on excitotoxicity in cultured cortical neurons exposed to excitatory amino acids (EAA; glutamate, N-methyl-D-aspartate [NMDA], AMPA, or kainate) at different temperatures (12 degrees to 37 degrees C). Cooling neurons to 30 degrees C and 20 degrees C was neuroprotective, but cooling to 12 degrees C was toxic. The extent of protection depended on the temperature, the EAA receptor agonist employed, and the duration of the EAA challenge. Neurons challenged briefly (5 minutes) with all EAA were protected, as were neurons challenged for 60 minutes with NMDA, AMPA, or kainate. The protective effects of hypothermia (20 degrees and 30 degrees C) persisted after rewarming to 37 degrees C, but rewarming from 12 degrees C was deleterious. Surprisingly, however, prolonged (60 minutes) exposures to glutamate unmasked a temperature-insensitive component of glutamate neurotoxicity that was not seen with the other, synthetic EAA; this component was still mediated via NMDA receptors, not by ionotropic or metabotropic non-NMDA receptors. The temperature-insensitivity of glutamate toxicity was not explained by effects of hypothermia on EAA-evoked [Ca2+]i increases measured using high- and low-affinity Ca2+ indicators, nor by effects on mitochondrial production of reactive oxygen species. This first characterization of excitotoxicity at profoundly hypothermic temperatures reveals a previously unnoticed feature of glutamate neurotoxicity unseen with the other EAA, and also suggests that hypothermia protects the brain at the level of neurons by blocking, rather than slowing, excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号