首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
金属离子掺杂及碳包覆改善LiFePO4电化学性能   总被引:2,自引:1,他引:1  
采用对LiFePO4进行单一金属离子掺杂(Zr)、复合掺杂金属离子(Mn,Zr,Ni)以及再进行表面碳包覆的方法,制得了粒子细微、粒径分布窄的Li1-xMxFePO4及Li1-xFePO4/C化合物.利用X射线衍射(XRD)和扫描电镜(SEM)对所得样品的晶体结构、表观形貌和粒径分布进行了分析研究.用Li1-xFePO4/C作正极材料进行了电池的充放电测试,结果表明,材料的充放电平台相对锂电极电位为3.4 V左右,首次放电比容量为159 mAh/g,而且表现出了良好的循环性能和高倍率性能.  相似文献   

2.
对废旧锂离子电池再生磷酸铁锂正极材料,采用钛元素进行掺杂改性。用X射线衍射仪和扫描电镜分析不同掺杂量对材料物相结构和形貌的影响。用恒电流充放电、循环伏安和交流阻抗等方法测试材料电化学性能。与未掺杂的再生LiFePO_4/C相比,掺杂5%Ti的LiFePO_4/C(LFT5P/C)材料电荷传递阻抗减小,电化学性能明显提高。掺杂正极在0.1 C下首次放电比容量高达140.6 mAh/g,1 C倍率下循环近400次,每次的容量衰减率仅为0.019 6%。  相似文献   

3.
以竹纤维为碳源,制备了碳包覆磷酸铁锂(LiFePO4/C)正极材料,研究了竹纤维掺杂量对材料结构和性能的影响.XRD分析表明:制备的材料具有标准的橄榄石型结构.充放电实验表明:当竹纤维掺杂量为7%时,材料具有较好的电化学性能,以0.1C在2.5~4.1V充放电,首次放电比容量为150 mAh/g,第20次循环的容量保持率为96%.  相似文献   

4.
采用共沉淀法制备的球形Ni_(0.8)Co_(0.15)(OH)_(1.9)作为锂离子电池正极材料前驱体,讨论了烧结制备LiNi_(0.8)Co_(0.15)Al_(0.05)O_2过程中W掺杂对正极材料结构和电化学性能的影响。结果表明:在烧结过程中引入Al并同时进行W掺杂,可得到球形形貌完整且表面具有一定空隙的正极材料;在750℃条件下烧结得到的LiNi_(0.8)Co_(0.15)Al_(0.049)W_(0.001)O_2正极材料具有极佳的电化学性能。W掺杂正极材料的放电比容量(2C)达到177.9 m Ah/g,循环300周后,容量保持率达到84.32%。在20C大倍率下,W掺杂正极材料具有153.9 m Ah/g的放电比容量,远高于未掺杂样品(95 mAh/g)。  相似文献   

5.
用微波法制备锰(Mn)掺杂的碳包覆硅酸亚铁锂(Li2 FeSiO4)复合正极材料,通过XRD、SEM、恒流充放电和交流阻抗等测试,研究锰掺杂量(x)对Li2 Fe1-xMnxSiO4/C(x:0、0.05、0.10、0.15、0.20和0.25)结构及电化学性能的影响.制备的材料直径约为50~100 nm,颗粒分散均匀.以C/16在1.5 ~ 4.5 V循环,x=0.10的材料Li2 Fe0.90 Mn0.10SiO4/C的首次放电比容量达113.38 mAh/g.  相似文献   

6.
采用草酸盐共沉淀法合成了掺杂Eu的锂离子电池正极材料LiNi_(1/3)Co_(1/3-x)Mn_(1/3)Eu_xO_2(x=0、0.2%、0.4%、0.6%和0.8%)。采用X射线衍射(XRD)和扫描电镜(SEM)对材料的结构和形貌进行了表征。通过LAND CT2001A电池测试系统对所制得样品进行电化学性能测试。结果表明:掺杂Eu后的样品都具有典型的a-NaFeO_2的特征层状结构,且晶型良好。掺杂量x=0.4%的样品粒径均匀,约为0.4~1 mm,团聚现象较少。充放电测试证实该样品在0.7 C下首次放电比容量为116.3 mAh/g,50次循环后放电比容量为114.1 mAh/g,容量保持率为98.12%,高于未掺杂样品的88.36%。  相似文献   

7.
沈孟锋  李凝  付憧津  卢娜  王俊芳 《电源技术》2011,35(10):1299-1301,1312
磷酸铁锂(LiFePO4)作为新兴的一种Li+动力电池正极材料,具有安全性好、价格低廉、循环性能好、结构稳定等其他锂离子材料无可比拟的优点,是现代商业化锂离子电池首选的正极活性材料.综述了LiFePO4正极材料的充放电机理及提高LiFePO4电化学性能的改性现状:表面包覆、掺杂金属离子及纳米颗粒改性.最后指出利用纳米粒...  相似文献   

8.
运用高温固相法成功合成了钠离子电池正极材料NaV1-xAlxPO4F(x=0、0.02).通过傅里叶变换红外光谱法(FT-IR)、X射线衍射(XRD)、扫描电镜(SEM)对材料的晶体结构和形貌进行了表征,研究结果表明NaV1-xAlxPO4F为简单单斜晶型.从材料的晶体结构、恒流充放电测试和循环性能等方面分析了掺杂元素Al在改善材料性能中的作用.实验表明:掺Al后正极材料的电化学性能得到较好的改善,材料的首次放电比容量为80.4 mAh/g,效率高达89.2%,可逆比容量损失只有9.7 mAh/g.在循环30次后可逆比容量为68.3 mAh/g,可逆容量保持率为85%.  相似文献   

9.
以La3+为Li位掺杂离子、Mg2+为Fe位掺杂离子,采用液相法合成双位掺杂的Li1-xLaxFe1-yMgyPO4/C(0≤x<1,O≤y<1)锂离子电池复合正极材料.通过X射线衍射法(XRD)和扫描电子显微镜法(SEM)研究材料的结构及形貌,恒流充放电测试电化学性能,考察Li1-xLa xFe1-yMgyPO4/C室温和低温电化学性能.结果表明:适量的La、Mg离子掺杂并未改变材料的结构;当La3+离子掺杂量为1%(摩尔分数)、Mg2+离子掺杂量为10%(摩尔分数)时,Li1-xLa xFe1-yMgyPO4/C的电化学性能最优.室温下,0.1C首次充放电比容量达到155 mAh/g.-20℃时,1 C、5 C、10 C较大倍率下首次充放电比容量为69、68、69 mAh/g,低温下不同放电倍率下稳定性良好,拥有优异的低温循环稳定性.  相似文献   

10.
以乙酸镁为镁源,用LiOH·H2O、Fe(NO3)3·9H2O、NH4H2PO4为原料,通过水溶液法制备了掺杂Mg2+的LiFePO4/C正极材料.用XRD、SEM、恒流充放电测试、循环伏安(CV)和交流阻抗谱(EIS)方法,研究了Mg2+掺杂对LiFePO4/C的结构、形貌及电化学性能的影响.研究结果表明:Mg2+掺...  相似文献   

11.
通过高温固相法,以金属氧化物(TiO2,V2O5,Nb2O5)作前驱体,合成了不同金属离子掺杂的LiFePO4/C复合材料。对以LiFePO4/C为正极的电池进行(XRD)、循环伏安和恒流充放电测试。结果表明,LiNb0.05Fe0.95PO4/C的电化学性能最好,0.05 C倍率下首次放电比容量达到154 mAh/g,即使在1 C倍率下放电,经过60次循环依然能保持在117 mAh/g左右。Fe位掺杂的效果与掺杂离子的半径、价态有密切关系,半径与Fe离子接近、价态高的离子对提高LiFePO4的电化学性能有利。  相似文献   

12.
邓凌峰  魏银烨 《电池工业》2011,16(5):259-262
以无水乙醇、纯水为溶剂,蔗糖为碳源,采用电化学法合成LiFePO4/C锂离子电池复合正极材料.通过X射线衍射(XRD)、扫描电镜(SEM)及充放电性能测试等方法对其晶体结构、微观形貌和电化学性能进行分析研究.结果表明:LiFePO4/C具有单一的橄榄石型晶体结构.其中在无水乙醇溶剂中合成的LiFePO4/C复合正极材料...  相似文献   

13.
以炭黑为碳源,采用喷雾干燥一碳热还原法(SDCTM)制备了多孔隙球形LiFePO4/C正极材料。研究了不同炭黑加入量对LiFePO4/C结晶性能、颗粒形貌、放电比容量和循环稳定性等性能的影响。结果表明:炭黑含量的增加有利于优化一次颗粒形貌,促进LiFePO4的结晶,提高其放电比容量、首次放电效率及容量保持率等电化学性能。当炭黑加入量X=2.5时,球形LiFePO4/C正极材料粒径在10μm左右,其一次颗粒粒径平均在200n/n左右,比表面积达4.15m2/g,碳含量12.0%wt。在室温下,0.1C充放电下,放电比容量为131.7mAh/g,首次放电效率为90.8%,30次循环后容量保持率为96.2%。在4C充放电下,仍有65.7mAh/g的可逆比容量,且显示了良好的充放电性能。  相似文献   

14.
采用氧化物前驱体对磷酸铁锂(LiFePO4)进行少量金属离子掺杂,用X射线衍射、电子扫描显微镜、循环伏安法和恒电流充放电对掺杂的LiFePO4进行了研究.结果表明,少量的掺杂离子在很大程度上提高了LiFePO4的电化学性能,特别是大电流放电性能中1.0%(摩尔分数)的Nb5 掺杂LiFePO4的1 C放电比容量约130 mAh/g.掺杂后的电化学性能与掺杂离子的半径、价态密切相关,半径合适、价态高的离子对提高LiFePO4的电化学性能有利.  相似文献   

15.
通过高温固相法合成以Fe2O3为铁源,Li2CO3为锂源,柠檬酸为碳源的Li0.98M0.02Fe0.99Mg0.01PO4/C(M=Al,Ti,V)锂离子电池正极材料,利用了X射线衍射光谱法(XRD)、循环伏安(CV)、电化学阻抗谱(EIS)和恒流充放电等实验方法研究了在铁位固定掺杂摩尔分数为1%的Mg的情况下,变换锂位掺杂金属对产物结构和电化学性能的影响。结果表明,少量金属掺杂后的产物Li0.98M0.02Fe0.99Mg0.01PO4/C其充放电容量和循环性能都比未掺杂的纯相要高。在室温下,Li0.98Al0.02Fe0.99Mg0.01PO4/C材料以0.1倍率放电时,首次比容量达到156 mAh/g,循环几次后达到160.2 mAh/g,循环性能良好,晶胞系数c/a的值与其他掺杂材料相比较高,结晶度好。  相似文献   

16.
采用XRD、ICP、SEM和电化学方法,研究了Sr2+掺杂对正极材料LiFePO4的结构、形貌和电化学性能的影响.掺杂适量的Sr2+不会改变LiFePO4的橄榄石结构,可提高电导率,抑制在充放电时的极化.在室温下,LiSr0.012Fe0.988PO4/C以0.2 C循环的初始比容量为142 mAh/g,循环50次,比容量未衰减;以3.0 C循环时,LiSr0.012Fe0.988PO4/C仍有较高的比容量和较好的循环性能;在60 ℃下以0.5 C循环,LiSr0.012Fe0.988PO4/C第60次循环的比容量为147 mAh/g.  相似文献   

17.
LiFexMn2-xO4材料的制备与性能研究   总被引:1,自引:0,他引:1  
杨茗佳  陈猛  张维维 《电池工业》2008,13(6):393-396
采用溶胶-凝胶法合成了尖晶石型LiFexMn2-xO4(X=0,0.05,0.1,0.2)正极材料。XRD测试结果表明该样品具有良好的尖晶石结构。电化学性能测试的结果表明掺杂后的材料均具有较好的循环稳定性。当掺Fe量为0.05时,首次放电比容量为104.37mAh/g,50次循环后比容量还有96.73mAh/g,容量衰减率仅为7.7%。  相似文献   

18.
以FeSO4·7 H2O和H3PO4为原料,用价格低廉的空气或氧气作为氧化剂,通过氧化沉淀法一步制得结晶态的FePO4·2 H2O。以此为前驱体制得的LiFePO4正极材料具有较好的性能。采用空气氧化时,0.2 C首次充放电比容量分别为153.5和140.8 mAh/g,首次库仑效率为91.7%;采用氧气氧化时,0.2 C首次充放电比容量分别为168.7和153.7 mAh/g,首次库仑效率为91.1%;循环性能和倍率性能还有待改善。用X射线衍射仪和扫描电镜等对两种方法制备的FePO4·2 H2O和LiFePO4的结构和形貌进行表征。用空气或氧气代替双氧水作为氧化剂显著降低了FePO4·2 H2O前驱体的制备成本,具有应用前景,值得深入研究。  相似文献   

19.
陈龙  李海君  陈敏  栗欢欢 《电池》2018,(2):90-94
采用柠檬酸溶胶-凝胶法合成锌离子(Zn~(2+))掺杂的磷酸钴锂(LiCoPO_4)正极材料LiZn_xCo_(1-x)PO_4。XRD和SEM分析表明:少量Zn~(2+)掺杂不会明显改变晶格结构,且粒径变小、粒度更均一。充放电(3.0~5.1V)及高低温性能测试表明:Zn2+掺杂后,材料的比容量提高、循环性能改善,并有较好的高倍率及高低温放电性能。Zn~(2+)掺杂量为0.01时,首次0.1 C放电比容量为150.3 mAh/g,比纯相增加15%。1.0C、5.0C放电比容量分别为118.9mAh/g和67.1mAh/g。在40℃、0℃下的0.1C放电比容量分别为160.0mAh/g和37.8mAh/g。循环伏安及交流阻抗测试表明:少量Zn~(2+)掺杂使电荷转移阻抗减小,电化学可逆性增强。LiZn_(0.01)Co_(0.99)PO_4与Li_4Ti_5O_(12)组成的3.3 V全电池以0.1C放电,比容量可达135.3mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号