首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An excimer laser may be used for preadhesion treatment of aluminum alloys. This method presents an alternative to the use of ecologically unfriendly chemicals involved in conventional anodizing pretreatments.

Experimental results indicate that preadhesion laser surface treatment significantly improved the shear strength of modified-epoxy bonded aluminum specimens compared with untreated and anodized substrates. The best results were obtained with laser energy of about 0.2 J/Pulse/cm2 where single lap shear strength was improved by 600-700% compared with that of untreated Al alloy, and by 40% compared with chromic acid anodizing pretreatment.

The mode of failure changed from adhesive to cohesive as the number of laser pulses increased during treatment. The latter phenomenon has been correlated with morphology changes as revealed by electron microscopy, and chemical modification as indicated by Auger and infrared spectroscopy.

It can be concluded that the excimer laser has potential as a precise, clean and simple preadhesion treatment of Al alloys.  相似文献   

2.
An excimer UV laser (193 nm) was used for preadhesion surface treatment of PEEK (polyetheretherketone) composite. This method presented an alternative to other limited and polluting conventional surface treatment methods. Experimental results indicated that laser preadhesion treatment significantly improved the shear and tensile adhesion strength of structural epoxy FM 300 2K bonded PEEK composite adherends compared with untreated and SiC blasted substrates. Best results were obtained with laser energies of 0.18 or 1 J/P cm.2 Shear strength of laser-treated joints was improved by 450% compared with that of untreated PEEK composite and by 200% compared with SiC-blasted pretreatment at ambient and at extreme temperatures. An order of magnitude of improvement was found in the tensile strength-of laser-treated PEEK composite in a sandwich structure compared with non-treated or abraded sandwich joints. The mode of failure changed from adhesive to cohesive as the number of pulses or laser energy increased during treatment. The latter phenomenon was correlated with surface cleaning as revealed by XPS, with morphology changes as revealed by scanning electron microscopy, and by chemical modification as indicated by FTIR and XPS. The bulk of the PEEK composite adherend was not damaged by the laser irradiation during treatment as indicated by the identical flexural strength before and after laser treatment. It can be concluded that the excimer laser has a potential as a precise, clean and simple preadhesion surface treatment for PEEK composite.  相似文献   

3.
The effects of carbon dioxide (10.6 μm) and argon fluoride excimer (193 nm) lasers as preadhesion surface treatments for polycarbonate and polyetherimide were studied. Single lap shear specimens bonded with a flexible polyurethane adhesive were utilized to investigate the effect of the various laser treatments on final shear properties and mode of failure. Experimental results based on mechanical properties, scanning electron microscopy and Fourier transform infra-red have indicated that the excimer laser is more effective than the carbon dioxide laser with respect to shear properties and the level of adhesion obtained with the thermoplastic adherends and polyurethane adhesive studied. Polycarbonate with its lower glass transition temperature Tg was affected by the carbon dioxide laser to a higher extent than the higher Tg polyetherimide. Furthermore, polycarbonate exhibited enhanced shear properties and a higher level of chemical modification following excimer laser irradiation compared to polyetherimide.  相似文献   

4.
An investigation was made of the effects of extraction and various chemicals applied on veneer surface on the wettability and gluing properties of apitong, Dipterocarpus grandiflorus Blanco, using urea formaldehyde resin. Wettability was determined by measuring contact angles with distilled water.

It was found that extraction with methanol-benzene greatly improved the wettability and gluability of apitong veneer. Likewise, surface treatment with methanol-benzene significantly increased the wettability of the veneer as well as the dry and wet shear strengths of the resulting bond. Treatment with sodium hydroxide increased both wettability and dry shear, but decreased the wet shear strength of the bond. Acetone did not have a significant effect on both wettability and dry shear, but decreased wet shear strength. On the other hand, ether had adverse effects on the wettability and gluability of apitong veneer.

A positive linear correlation was found between wettability and gluability of apitong veneer.  相似文献   

5.
The durability properties of bonded lap shear joints made from an epoxy/dicyandiamide adhesive and zinc metal coupons have been investigated. The metal coupons were anodized in sodium hydroxide solutions before bonding. The influence of the anodizing conditions on the morphology and composition of the oxide layers has been studied using SEM and TEM imaging analyses as well as X-ray photoelectron spectroscopy. The hydrolytic stability of the bonded joints has been assessed by storing the joints in water at 70 °C or 90 °C for periods of time up to 5 weeks. Polypropylene has been used as a model adhesive to study the influence of mechanical interlocking effects on the performance of the bonded joints. Depending on the anodizing conditions, the improved durability properties have been attributed either to „mechanical interlocking effects“ or to the higher hydrolytic stability of the oxide layers generated during the anodizing treatment.

Some of the results gained from the anodization of zinc have been extrapolated to hot-dipped galvanized steel. Bonded joints made from hot-dipped galvanized coupons anodized under smooth conditions (2% NaOH) displayed residual shear strengths of up to 70% higher than specimens simply degreased after immersion test. The generation of stable oxide layers as well as the suppression of intergranular corrosion phenomena at the metal/adhesive interface can explain the improved durability properties.  相似文献   

6.
Compatibility between polysulfone (PSF) and epoxy oligomers in the melt state as well as the morphology and properties of alloys obtained were studied as a function of composition. The compatibility depends on the length and structure of epoxy molecules, and is best in the case of epoxysulfone oligomers (ESO).

The properties of hybrid matrices are determined by their composition and morphology. The most pronounced effects are observed in the regions of small concentrations of either component. A small quantity of PSF significantly improves thermal stability and heat resistance of the epoxy resin as well as its impact strength. On the other hand, on addition to PSF of small amounts of epoxysulfone oligomers, the processability of the matrix can be substantially improved. In particular, the melt viscosity decreases, and wetting and impregnation of fibrous reinforcement is facilitated. Besides, the matrix adhesion to fibers is increased.

Powdered PSF/ESO/curing agent mixtures are good for application in solvent-free technological processes of fibrous composites production, e.g. in electrostatic deposition of matrix particles onto a reinforcing fabric. Plastics based on hybrid matrices are distinguished by improved strength.  相似文献   

7.
An extensive test series was conducted on bulk and in-situ adhesive specimens with a view to characterizing their mechanical properties under different loading modes and states of stress.

It was found that a good correlation exists between the in-situ and the bulk properties of shear yield strength and elastic modulus derived from torsion tests. The properties derived from uniaxial testing of the bulk adhesive were related to those of an in-situ adhesive layer in shear by a combined stress law which follows a modified Von Mises failure criterion. It was thus concluded that the basicelastic and strength characteristics of the in-situ adhesive under a compound state of stress may be evaluated through simple tests on the bulk material in uniaxial tension and compression.  相似文献   

8.
A new manufacturing method for the cup-type composite flexspline for a harmonic drive was developed using adhesive joining technology to obviate the manufacturing difficulty of the conventional one-piece cup-type steel flexspline and to improve the dynamic characteristics of the flexspline.

In this method, the boss, tube and tooth sections of the flexspline were designed and manufactured separately, and adhesively bonded. The tube section was manufactured with high strength carbon fiber epoxy composite material and its dynamic properties were compared with those of the conventional steel flexspline.

The torque transmission capability of the adhesively-bonded joint was numerically calculated using the nonlinear shear stress-strain relationship which was represented by an exponential form.

From the test results of the manufactured composite flexspline and the conventional steel flexspline, it was found that the manufactured composite flexspline had better torque transmission characteristics. Also, it was found that the damping capacity of the composite flexspline was considerably improved.  相似文献   

9.
A new manufacturing method for the cup-type composite flexsplinc drive was developed using adhesive joining technology to obviate the manufacturing difficulty of the conventional one-piece cup-type steel flexspline and to improve the dynamic characteristics of the flexspline.

In this method, the boss, tube and tooth sections of the flexspline were designed and manufactured separately, and adhesively bonded. The tube section was manufactured with high strength carbon fiber epoxy composite material and its dynamic properties were compared with those of the conventional steel flexspline.

The torque transmission capability of the adhesively-bonded joint was numerically calculated using the nonlinear shear stress-strain relationship which was represented by an exponential form.

From the test results of the manufactured composite flexspline and the conventional flexspline, it was found that the manufactured composite flexspline had better torque transmission characteristics. Also, it was found that the damping capacity of the composite flexspline was considerable improved.  相似文献   

10.
Effective shear rate is one of the indispensable parameters for the design of aerobic fermentors using a viscous non-Newtonian system. The estimation of effective shear rate in airlift loop bioreactors has been investigated with liquid circulation velocity. An empirical correlation of effective shear rate in airlift loop reactors is proposed.

γ= 3.26-3.51 ; 102UG + 1.48 104U2G

It is found that the effective shear rate is lower in airlift reactors than in bubble columns. This equation can be used for the cultivation of cells sensitive to shear stress.  相似文献   

11.
Procedures presently used to prepare surfaces of aluminum adherends for bonding with structural adhesives entail the use of corrosive solutions that are environmentally hazardous.

As an alternative, we investigated whether eximer laser radiation can effectively be used to prepare the surfaces of aluminum adherends. The results indicate such a methodology to be very promising. Using a KrF laser, at a radiant intensity of 1.67 × 1013 W/m2/pulse, successive mm2 regions of aluminum coupons were irradiated for fixed numbers of pulses/region. This resulted in changes to the topographies and oxidation states of the surfaces. Symmetric lap shear joints from coupons so treated had considerably increased strains at fracture and 24% greater joint strengths as compared with controls. The results further indicate that fracture toughness can be increased above that of presently used procedures. The topographies of the treated and control surfaces were characterized using a new topographic characterizing system. An elastic model is presented that relates failure characteristics to experimentally-determined topographic parameters. The results suggest that different mechanisms for joint enhancement are operative.  相似文献   

12.
The effect of some types of xylene formaldehyde on epoxy resin adhesive is studied. Xylene formaldehyde resin or modified xylene formaldehyde resins are mixed into liquid epoxy resin and curing properties of the blends, their adhesive properties and the dispersion state of xylene formaldehyde resin in cured adhesive film are examined. The results obtained are as follows.

1) Generally, by the addition of xylene formaldehyde resins, the degree of curing of blends are decreased, but pot life is prolonged, and tensile shear strength of steel bonds is increased.

2) It is observed that effects of the amount of xylene formaldehyde resins and curing condition on tensile shear strength vary with the kind of xylene formaldehyde resin, because of the difference in chemical structure of xylene formaldehyde resins and their reactivity to epoxy resin.

3) It is found that a limited region of compatibility, between 80 and 100 phr, exists for 100% xylene formaldehyde resin in epoxy resin. It is also found that joint strength is reduced with higher viscosity and molecular weight of 100% xylene formaldehyde resin in the case of 80 phr blends, and that these results have some relation to the dispersion state of xylene formaldehyde resin in epoxy resin, judging from the cured adhesive film observed under a phase contrast microscope.  相似文献   

13.
This work continues our study of the hot melt adhesive (HMA) model published earlier [1]. This HMA model was developed based on the pressure sensitive adhesive (PSA) tack model established previously [2]:

P = P0BD (1)

where P is the adhesive bond strength, P0 is the interfacial (intrinsic) adhesion term, B is the bonding term and D is the debonding term. The previous paper [1] describes the B and D terms in detail. However, only a brief discussion of the P0 term was given. The present paper will provide a more in-depth but still rather qualitative study of the P0 term within the framework of the adhesion model described in Eq. (1). HMAs studied are ethylene/vinyl acetate copolymer (EVA)/tackifier/wax blends. Substrates studied are untreated and corona-discharge-treated polyolefins such as polypropylene (PP) and polyethylene (PE). First, it has been found that the tackifier surface tension could be roughly correlated with one of its thermodynamic parameters: the solubility parameter dispersion component. Secondly, except for EVA/tackifier binary blends, the compatibility of any two of these three components, the EVA polymer, the tackifier and the wax, in a HMA can be estimated from surface tension and X-ray photoelectron spectroscopy (XPS) measurements. Thirdly, based on the study of the EVA/mixed aliphatic-aromatic tackifier/wax model HMA system, it has been observed that the HMA/polyolefin substrate interfacial composition depends on the wax/substrate compatibility. The cause of an inferior peel strength of a HMA containing a high wax content to a polyolefin substrate is possibly due to the formation of a weak boundary layer (WBL) of wax at the interface and/or low dissipative properties of the HMA.

Also, the relationship between EVA/tackifier/wax interactions and HMA peel strength will be discussed. A correlation between the EVA/tackifier compatibility measured by cloud point and viscoelastic experiments to the debonding term, D, in Eq. (1) has been found.  相似文献   

14.
The adhesive interaction between oxygen-plasma-treated, polyacrylonitrile-based, high-tensile-strength carbon fibers and a polycarbonate matrix has been studied. Several models have been used to predict the impact of the plasma treatment process on the strength of adhesion between both jointing partners. These approaches have been the thermodynamic work of adhesion which was calculated from the solid surface tensions, based on the results of contact angle measurements versus test liquids, the contact angle which was directly obtained via polycarbonate melt droplets on single carbon fibers and the zeta (ς)-potential data provided by streaming potential measurements. The results have been compared with the interfacial shear strength determined from the single-fiber fragmentation test. Additionally, the single-fiber tensile strength of the oxygen-plasma-treated carbon fibers was determined.

We confirmed that any physico-chemical method on its own fails to describe exactly the measured adhesion. However, for the investigated system, the conscientious interpretation of the data obtained from wetting measurements, in conjunction with the thermodynamic approach, is sufficient to predict the success of a modification technique which has been applied to one component in order to improve adhesion.  相似文献   

15.
The effect of surface treatments on the bond strength in glass fibre-polyester resin composites has been investigated using single fibre interfacial shear strength specimens and the short beam shear test for interlaminar shear strength.

A range of bond strengths was obtained by using, either alone or in combination, the various components of the size formulation which is normally applied to the fibres, so that the interaction between the glass surface and the polyester ranged from Van de Waal forces through hydrogen bonding to covalent bonding, the bond strength increasing in that order.

The relative contribution to bond strength of mechanical bonding due to thermo-mechanical mismatch between the two components and of chemical bonding or physical interaction between the three phases, glass-surface treatment-resin, has been evaluated and found to be one third and two thirds respectively.  相似文献   

16.
The interfacial bond strength in glass fibre-polyester resin composites has been investigated using various experimental techniques. These included blocks of resin containing fibre (in which, depending on the geometry of the specimen, failure occurs in either a shear or tensile mode) the pullout of a fibre from a disc of resin and a short beam shear test for interlaminar shear strength determination.

Low power optical microscopy and optical retardation measurements of stress induced birefringence were used to detect the difference between intact and debonded fibre resin interfaces. The shear modulus and shear strength of the resin were obtained from torsion tests on cylindrical rods of the resin.

The single fibre shear debonding specimen and the short beam shear test are shown to be the most viable test methods but interpretation of the results is complicated by the various modes of failure possible and by the different stress states which exist in the area of the specimen where debonding starts. Stress concentration factors obtained by finite element analysis and photoelastic analysis have been applied to the results from these tests and the corrected interfacial bond strengths are in close agreement.

The real interfacial bond strengths of well bonded glass-fibre polyester resin systems is shown to be of the order of 70 MN m-2.  相似文献   

17.
Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were prepared and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI.

Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177°C, and 204°C before and after exposure to water-boil and to thermal aging at 204°C for up to 1000 hours.

The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260°C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177°C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204°C [68% versus 50% (STPI-LARC-2) and 40% (LARC-TPI)].

These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.  相似文献   

18.
Room Temperature curing compositions of epoxy resins with high temperature service capability (95-120°C) were formulated and evaluated. The compositions were based on selected high functionality atomatic epoxy polymers and multicomponent poly amine curing agent systems. Toughening was achieved by addition of a rubbery phase either by prereaction of the epoxy resin with carboxyl terminated (CTBN) or by amine terminated (ATBN) poly butadiene acrylonitrile. The latter elastomeric component served as a part of the poly amine curing agent.

Best results were achieved with an adhesive formulation comprising tetra glycidyl-4-4'-diaminodiphenylmethane (TGDDM) and triglycidyl ether of p-aminophenol with triethylenetetramine and addition of ATBN with a felt carrier.

Lap shear strengths of aluminum/aluminum specimens primed by silane coupling agent in the order of 22 MPa at 25°C and 11 MPa at 120°C with T-Peel strengths of 1.6N/mm at 25°C and 0.52 N/mm at 120°C, were obtained.

The thermal behaviour and transitions, the chemical and mechanical properties, the microstructure and morphology of the selected adhesive formulation were studied, using DSC, Gehman, FTIR, mechanical testing and SEM analysis, respectively.

Experimental results showed that the selected compositions could develop good high temperature (120°C) properties while cured at room temperature. Furthermore, their high temperature performance compares favorably or even exceeds that of commercially available room-temperature-curing adhesive compounds, and are competitive with elevated temperature cured film adhesives.  相似文献   

19.
Microscale (25 mm gauge length) “dogbone” resin specimens with single carbon fibers embedded through the length of the specimen have been studied as a method for determining the fiber-resin interphase strength. The specimens are pulled in tension until the fiber fragments to a critical length, lc. Evidence is presented here, based primarily on the relaxation of stress birefringence around the fiber fragment, that this test may not be an unambiguous measure of fiber-resin adhesion. Data obtained for various production lots of AS-4, AS-6, and IM-6 fibers indicate an increase in lcd with laminate tensile strength. Although there is theoretical justification for this correlation, it requires that the interphase shear strength is relatively constant.

In those instances where interfacial adhesion was expected to be low, i.e., surface contamination or unsurface treated fiber, there was a significant increase in lc/d and usually a distinct difference in stress birefringence compared to “good” adhesion. However, the distinction in stress birefringence was not always clear cut.  相似文献   

20.
The effects of corrosive environments on adhesive bonds to electro-galvanized, zinc/aluminum alloy coated, coated electro-galvanized, and cold-rolled steels have been investigated. Bonds prepared using a rubber-modified dicyandiamide-cured epoxy adhesive, an epoxy-modified poly(vinyl chloride)-based adhesive, an acrylic-modified poly(vinyl chloride)-based adhesive a one-part urethane adhesive, and a two-component epoxy-modified acrylic adhesive were exposed under no-load conditions to constant high humidity or cyclic corrosion exposure for 50 days or 50 cycles (10 weeks) respectively.

Over the course of this study, exposure to constant high humidity had little effect on lap shear strength for any of the systems studied. Bond failures were initially cohesive, and with few exceptions remained so.

Bond strength retention under the cyclic corrosion exposure conditions employed was strongly dependent on adhesive composition and on substrate type. On galvanized substrates, lap shear strengths for the poly(vinyl chloride)-based adhesives were reduced by 90-100% during the course of the corrosion exposure, and a change in the mode of bond failure (from cohesive to interfacial) was observed. On the coated electro-galvanized steel substrate, the poly(vinyl chloride)-based adhesives showed about 50% retention in lap shear strength and a cohesive failure throughout most of the corrosion test. The dicyandiamide-cured epoxy adhesive used in this study generally showed the best lap shear strength retention to zinc-coated substrates; bonds to cold-rolled steel were severely degraded by corrosion exposure. The performance of the acrylic and urethane adhesives were intermediate to the dicyandiamide-cured epoxy and poly(vinyl chloride)-based adhesives in strength retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号