首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Extracellular vesicles (EVs), specifically exosomes, carry a cell-type dependent cargo that is transported to the recipient cell and translated in the presence of a required machinery. Differences in the cargo carried by the corneal and conjunctival-derived EVs could be the agent that triggers the transdifferentiation of these two cell populations. Therefore, this study investigates the role of EVs in triggering the plasticity of corneal and conjunctival epithelial cells and identifies prospective miRNA and genes responsible for maintaining ocular surface homeostasis. The EVs were extracted from the conditioned media (after starving) of corneal epithelial (hTCEpi) and conjunctival (HCjE-Gi) cell lines using ultracentrifugation. HCjE-Gi cells were cultured with hTCEpi-derived EVs and vice-versa. The EVs were characterized as exosomes using Nanosight and Flow cytometry. KRT3 and KRT12 were used as associated corneal markers, whereas KRT7 and KRT13 were used as associated conjunctival markers with ΔNp63 as a differentiation marker. Shift of these markers was an indication of transdifferentiation. The cargo of the extracted exosomes from both the cell types was explored using next-generation sequencing. The hTCEpi-derived EVs induced conjunctival epithelial cells to express the corneal-associated markers KRT3 and KRT12, losing their conjunctival phenotype at both the mRNA and protein level. Simultaneously, HCjE-Gi-derived EVs induced corneal epithelial cells to express the conjunctival associated markers KRT7 and KRT13, losing their corneal phenotype. This process of differentiation was accompanied by an intermediate step of cell de-differentiation showed by up-regulation in the expression of epithelial stem cell marker ΔNp63, also shown on the ex vivo human cadaveric donor corneas. miRNA molecules (total of 11 including precursor and mature) with significant differences in their relative abundance between the two populations (p < 0.05) were found and investigated. miR-9-5p expression was higher in HCjE-Gi cells and HCjE-Gi-derived EVs when compared to hTCEpi cells and hTCEPi-derived EVs (p < 0.001). The results suggest that EVs released by the two cell types have the ability to influence the transdifferentiation of human conjunctival and corneal epithelial cells. miR-9-5p could have a role in stem cell homeostasis and cell differentiation via HES-1 gene.  相似文献   

2.
Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages.  相似文献   

3.
Our previous study indicated that both 17β-estradiol (E2), known to be an endogenous estrogen, and bisphenol A (BPA), known to be a xenoestrogen, could positively influence the proliferation or differentiation of neural stem/progenitor cells (NS/PCs). The aim of the present study was to identify the signal transduction pathways for estrogenic activities promoting proliferation and differentiation of NS/PCs via well known nuclear estrogen receptors (ERs) or putative membrane-associated ERs. NS/PCs were cultured from the telencephalon of 15-day-old rat embryos. In order to confirm the involvement of nuclear ERs for estrogenic activities, their specific antagonist, ICI-182,780, was used. The presence of putative membrane-associated ER was functionally examined as to whether E2 can activate rapid intracellular signaling mechanism. In order to confirm the involvement of membrane-associated ERs for estrogenic activities, a cell-impermeable E2, bovine serum albumin-conjugated E2 (E2-BSA) was used. We showed that E2 could rapidly activate extracellular signal-regulated kinases 1/2 (ERK 1/2), which was not inhibited by ICI-182,780. ICI-182,780 abrogated the stimulatory effect of these estrogens (E2 and BPA) on the proliferation of NS/PCs, but not their effect on the differentiation of the NS/PCs into oligodendroglia. Furthermore, E2-BSA mimicked the activity of differentiation from NS/PCs into oligodendroglia, but not the activity of proliferation. Our study suggests that (1) the estrogen induced proliferation of NS/PCs is mediated via nuclear ERs; (2) the oligodendroglial generation from NS/PCs is likely to be stimulated via putative membrane-associated ERs.  相似文献   

4.
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.  相似文献   

5.
The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271 mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271 mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271 mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate.  相似文献   

6.
Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC) is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP), p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma) were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD) with appropriate software (ModFit LT; BD). The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore). The mRNA levels of AFP relative to Alb(−): Alb(−), Alb(+), and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−)), and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(−) and p = 0.004 for Prionex), and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(−) and Prionex), and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+). More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+) than in Alb(−) (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−), Alb(+), Prionex, respectively). The same results were obtained in HepG2. Cell proliferation was inhibited in 5 g/dL albumin medium in both HepG2 cells and Hep3B cells in 24 h culture by counting cell numbers. The presence of albumin in serum reduces the phosphorylation of Rb proteins and enhances the expression of p21 and p57, following an increase in the G0/G1 cell population, and suppresses cell proliferation. These results suggest that albumin itself suppresses the proliferation of hepatocellular carcinoma.  相似文献   

7.
8.
Enamel matrix derivative (EMD) is widely used in periodontal tissue regeneration therapy. However, because the bioactivity of EMD varies from batch to batch, and the use of a synthetic peptide could avoid use from an animal source, a completely synthetic peptide (SP) containing the active component of EMD would be useful. In this study an oligopeptide synthesized derived from EMD was evaluated for whether it contributes to periodontal tissue regeneration. We investigated the effects of the SP on cell proliferation and osteoblast differentiation of human mesenchymal stem cells (MSCs), which are involved in tissue regeneration. MSCs were treated with SP (0 to 1000 ng/mL), to determine the optimal concentration. We examined the effects of SP on cell proliferation and osteoblastic differentiation indicators such as alkaline phosphatase activity, the production of procollagen type 1 C-peptide and osteocalcin, and on mineralization. Additionally, we investigated the role of extracellular signal-related kinases (ERK) in cell proliferation and osteoblastic differentiation induced by SP. Our results suggest that SP promotes these processes in human MSCs, and that ERK inhibitors suppress these effects. In conclusion, SP promotes cell proliferation and osteoblastic differentiation of human MSCs, probably through the ERK pathway.  相似文献   

9.
Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.  相似文献   

10.
11.
Kansenone is a triterpene from the root of the traditional Chinese medicine, Euphorbia kansui. However, kansenone exerts serious toxicity, but the exact mechanism was not clear. In this work, the effects of kansenone on cell proliferation, cell cycle, cell damage, and cell apoptosis were investigated. The suppression of cell proliferation was assessed via the colorimetric MTT assay, and cell morphology was visualized via inverted microscopy after IEC-6 cells were incubated with different concentrations of kansenone. Reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) content were detected for evaluating cell damage. RNase/propidium iodide (PI) labeling for evaluation of cell cycle distribution was performed by flow cytometry analysis. Annexin V-fluorescein isothiocyanate (FITC)/PI and Hoechst 33342/Annexin V-FITC/PI staining assay for cell apoptosis detection were performed using confocal laser scanning microscopy and high content screening. Moreover, apoptosis induction was further confirmed by transmission electron microscope (TEM) and JC-1 mitochondrial membrane potential, western blot and RT-PCR analysis. The results demonstrated that kansenone exerted high cytotoxicity, induced cell arrest at G0/G1 phase, and caused mitochondria damage. In addition, kansenone could up-regulate the apoptotic proteins Bax, AIF, Apaf-1, cytochrome c, caspase-3, caspase-9, caspase-8, FasR, FasL, NF-κB, and TNFR1 mRNA expression levels, and down-regulate the anti-apoptotic Bcl-2 family proteins, revealing that kansenone induces apoptosis through both the death receptor and mitochondrial pathways.  相似文献   

12.
The role of LeuRS, an aminoacyl-tRNA synthetase, as an intracellular l-leucine sensor for the mTORC1 pathway has been the subject of much research recently. Despite this, the association between LeuRS and lactation in dairy cow mammary epithelial cells (DCMECs) remains unknown. In this study, we found that LeuRS expression in mammary gland tissue was significantly higher during lactation than pregnancy. Moreover, our data demonstrates that LeuRS is localized in the cytoplasm. Treatment with leucine increased DCMECs viability and proliferation, as well as mammalian target of rapamycin (mTOR), p-mTOR, ribosomal protein S6 kinase 1 (S6K1), p-S6K1, β-Casein, sterol regulatory element binding protein 1c (SREBP-1c), glucose transporter 1 (GLUT1), and Cyclin D1 mRNA and protein expression. Secretion of lactose and triglyceride were also increased. siRNA-mediated knockdown of LeuRS led to reduction in all of these processes. Based on these data, LeuRS up-regulates the mTOR pathway to promote proliferation and lactation of DCMECs in response to changes in the intracellular leucine concentration.  相似文献   

13.
In this study, we fabricated a three-dimensional (3D) scaffold using industrial polylactic acid (PLA), which promoted the proliferation and differentiation of human neural stem cells. An industrial PLA 3D scaffold (IPTS) cell chip with a square-shaped pattern was fabricated via computer-aided design and printed using a fused deposition modeling technique. To improve cell adhesion and cell differentiation, we coated the IPTS cell chip with gold nanoparticles (Au-NPs), nerve growth factor (NGF) protein, an NGF peptide fragment, and sonic hedgehog (SHH) protein. The proliferation of F3.Olig2 neural stem cells was increased in the IPTS cell chips coated with Au-NPs and NGF peptide fragments when compared with that of the cells cultured on non-coated IPTS cell chips. Cells cultured on the IPTS-SHH cell chip also showed high expression of motor neuron cell-specific markers, such as HB9 and TUJ-1. Therefore, we suggest that the newly engineered industrial PLA scaffold is an innovative tool for cell proliferation and motor neuron differentiation.  相似文献   

14.
A specific oligodeoxynucleotide (ODN), ODN MT01, was found to have positive effects on the proliferation and activation of the osteoblast-like cell line MG 63. In this study, the detailed signaling pathways in which ODN MT01 promoted the differentiation of osteoblasts were systematically examined. ODN MT01 enhanced the expression of osteogenic marker genes, such as osteocalcin and type I collagen. Furthermore, ODN MT01 activated Runx2 phosphorylation via ERK1/2 mitogen-activated protein kinase (MAPK) and p38 MAPK. Consistently, ODN MT01 induced up-regulation of osteocalcin, alkaline phosphatase (ALP) and type I collagen, which was inhibited by pre-treatment with the ERK1/2 inhibitor U0126 and the p38 inhibitor SB203580. These results suggest that the ERK1/2 and p38 MAPK pathways, as well as Runx2 activation, are involved in ODN MT01-induced up-regulation of osteocalcin, type I collagen and the activity of ALP in MG 63 cells.  相似文献   

15.
16.
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.  相似文献   

17.
18.
Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.  相似文献   

19.
Attention deficit hyperactivity disorder (ADHD) is one of the most common worldwide mental disorders in children, young and adults. If left untreated, the disorder can continue into adulthood. The abuse of ADHD-related drugs to improve mental performance for studying, working and everyday life is also rising. The potentially high number of subjects with controlled or uncontrolled use of such substances increases the impact of possible side effects. It has been shown before that the early ADHD drug methylphenidate influences bone metabolism negatively. This study focused on the influence of three more recent cognitive enhancers, modafinil, atomoxetine and guanfacine, on the differentiation of mesenchymal stem cells to osteoblasts and on their cell functions, including migration. Human mesenchymal stem cells (hMSCs) were incubated with a therapeutic plasma dosage of modafinil, atomoxetine and guanfacine. Gene expression analyses revealed a high beta-2 adrenoreceptor expression in hMSC, suggesting it as a possible pathway to stimulate action. In bone formation assays, all three cognitive enhancers caused a significant decrease in the mineralized matrix and an early slight reduction of cell viability without triggering apoptosis or necrosis. While there was no effect of the three substances on early differentiation, they showed differing effects on the expression of osterix (OSX), receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) in the later stages of osteoblast development, suggesting alternative modes of action. All three substances significantly inhibited hMSC migration. This effect could be rescued by a selective beta-blocker (Imperial Chemical Industries ICI-118,551) in modafinil and atomoxetine, suggesting mediation via beta-2 receptor stimulation. In conclusion, modafinil, atomoxetine and guanfacine negatively influence hMSC differentiation to bone-forming osteoblasts and cell migration through different intracellular pathways.  相似文献   

20.
Epithelial ovarian cancer (EOC) is one of the leading causes of cancer deaths in women worldwide. Ubiquitin-conjugating enzyme 9 (Ubc9), the sole conjugating enzyme for sumoylation, regulates protein function and plays an important role in sumoylation-mediated cellular pathways. Although sumoylation plays a key role in DNA repair and tumorgenesis, whether Ubc9 is involved in EOC progression remains unknown. In the present study, we constructed Ubc-9 expressed recombined plasmid pEGFP-N1-Ubc9. The mRNA levels of Ubc9 were confirmed in human ovarian cell lines before and after transfection with pEGFP-N1-Ubc9 or small interfering RNA (siRNA) targeted Ubc9 by real-time polymerase chain reaction (PCR). The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to observe the effect of Ubc9 on cell proliferation. The protein levels of Ubc9, and proliferation-related signals Akt and physphorylated Akt were determined by Western blot. Our results showed that proliferation of EOC cells increased significantly in Ubc9 overexpressing cells, but decreased in Ubc9 knockdown cells. The physphorylation of Akt showed similar trends. In addition, the inhibitor of PI3K/Akt signaling pathway, LY294002, dramatically inhibited the growth of Ubc9 overexpressing cells. Therefore, Ubc9 gene plays an important role in cell proliferation in EOC through PI3K/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号