首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A multiplex polymerase chain reaction (PCR) method was developed to identify and distinguish 3 kinds of stacked genetically modified (GM) maize (MON810× MON863, NK603×MON863, and NK603×MON810× MON863). Four primer pairs, SSIIb JHF/JHR, C3b 5′/TAP1–3′, HS01/cry-CR01, and HS01/CTP164-3′ yielded 101, 129, 194, and 314 bp amplicons, respectively, Using the genomic DNA of the 3 stacked GM maize as templates, 3 or 4 corresponding PCR amplicons were amplified with similar band intensities by the multiplex PCR. The limit of detection (LOD) was approximately 0.5% for 3 kinds of stacked GM maize, using the multiplex PCR. The detection system using multiplex PCR developed in this study may be applicable to monitoring, identifying, and distinguishing not only the stacked GM maizes but also other stacked genetically modified organisms (GMOs).  相似文献   

3.
A method using polymerase chain reaction (PCR) was designed for the detection of genetically modified maize CBH351, which has not authorized as safe for use in foods and feeds in Japan yet. We analyzed a recombinant DNA (r-DNA) sequence introduced into CBH351 maize and designed specific primer pairs to amplify a segment including part of the r-DNA. The PCR products obtained by using the designed primer pairs are specific for CBH351 and should prevent false positive results caused by other maizes and other main cereal crops. The r-DNA introduced into CBH351 could be detected from maize samples containing 0.05-0.1% CBH351 maize. This sensitivity is theoretically equivalent to a level of several genome copies and so this technique is a very efficient means to detect CBH351 maize.  相似文献   

4.
BACKGROUND: The polymerase chain reaction (PCR) is a powerful tool that is being increasingly used for detection of transgenic DNA. PCR requires only a minute quantity of template, but sensitive and accurate testing requires DNA of sufficient purity and free from inhibitors such as plant polysaccharides. Several standard protocols are available for this purpose, but they usually involve several steps, imply destruction of the maize kernel, or are time‐consuming. Our aim was to develop a fast and simple extraction method to isolate a raw DNA‐containing solution from maize tissues suitable for use as a template in a PCR‐based detection assay with specific oligonucleotides directed to the identification of event MON810. RESULTS: The NaOH‐based DNA extraction method we report here is time‐saving (5 min) and can be used to isolate DNA‐containing solutions from a small maize leaf portion (down to 1 mg) or from a single overnight‐germinated kernel. PCR performed with selected primers yielded reproducible detection of transgenic DNA. CONCLUSION: The main advantages of the procedure are the quick extraction step, the possibility of non‐destructive testing of maize kernels, and the robustness of the PCR‐based detection, a consequence of the selection of MON810‐matching oligonucleotides yielding intense and highly specific amplicons. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
为对商业化进口7种转基因卡诺拉油菜籽品种(系)进行高通量、快速、准确检测,建立可用于鉴定7种转基因卡诺拉油菜籽品种(系)多重PCR检测方法。首先建立7种转基因油菜籽品种(系)稳定单重PCR检测体系,在此基础上再建立和优化7种转基因油菜籽品种(系)多重PCR检测体系;获得4组可用于鉴定7种转基因卡诺拉油菜籽品种(系)多重PCR检测体系,其中1组为四重PCR检测体系,3组为两重PCR检测体系。优化多重PCR体系具有较高稳定性和重复性,可作为检测该7种转基因油菜籽品种(系)有效方法。  相似文献   

6.
Specific legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. This has necessitated the development of methods for detection and quantification of such materials. Here we present a robust, quantitative, 9-plex PCR method for event-specific detection of maize TC1507, MON863, MON810, T25, NK603, GA21, construct specific detection of BT11, BT176 and detection of the endogenous hmga maize reference gene. The method is suitable for quantification in the 0–2% range with a detection limit of approximately 0.1%. PCR is carried out in two stages. In the first stage, bipartite primers containing a universal 5′-sequence and a GMO specific 3′-sequence are used. In the second PCR stage only a universal primer is used. Trypsin digestion between the first and second PCR stages enhances signal strength and reproducibility. Probes hybridising to the PCR amplicons are then labelled by primer extension and detected by fluorescence capillary electrophoresis. Good agreement was observed in 76 of 80 determinations when 10 food and feed samples were analysed using the multiplex PCR assay and compared to results from quantitative real-time 5′-nuclease PCR. The presented method is therefore suitable for quantification purposes for food and feed containing the most common maize GMOs.  相似文献   

7.
To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.  相似文献   

8.
Legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. To this end, we have developed a simple and accurate capillary electrophoresis multiplex quantitative competitive PCR (ce-mqcPCR) method for event-specific quantification of the five novel GM maize events DAS59122, LY038, MON88017, MIR604 and Event 3272. The method combines the simplicity of constructing multiple competitors in silico with the high resolution and sensitivity of fluorescence capillary electrophoresis and the use of an internal template reference amplicon. The competitors are synthesised commercially and added in equal amounts as a restriction enzyme-digested plasmid insert to the multiplex PCR. Quantification is performed by analysing the relative amounts of GMO and GMO competitor fragment pairs after capillary electrophoresis and correcting for differences in maize DNA by comparing with the internal reference gene amplicon. Since the competitors employ the same primers as their corresponding targets, all existing qualitative multiplex PCRs can in principle easily be converted to quantitative assays without changing primer sets or amplification conditions. The ce-mqcPCR method correctly determined 120 GMO templates in known mixed samples. No false-positive or false-negative signals were obtained.  相似文献   

9.
 The surveillance of food labelling concerning genetically modified organisms (GMOs) requires DNA-based analytical techniques. Present assay systems allow the detection of GMO in food; however, they do not permit their quantitation. In this study, we report the development of quantitative competitive polymerase chain reaction (QC-PCR) systems for the detection and quantitation of the Roundup Ready soybean (RRS) and the Maximizer maize (MM) in food samples. Three DNA fragments that differ from the GMO-specific sequences by an insertion were constructed and used as internal standards in the PCR. These standards were calibrated by co-amplifying with mixtures containing RRS DNA and MM DNA, respectively. The calibrated QC-PCR systems were applied to nine commercial food samples containing RRS DNA and to three certified RRS flour mixtures in order to elucidate whether these food samples contain more or less than 1% RRS DNA. Finally, the GMO contents of four samples that were found to contain more than 1% RRS were determined by QC-PCR using various amounts of standard DNA. Received: 13 January 1998 / Revised version: 4 March 1998  相似文献   

10.
The presence of maize intrinsic and recombinant cry1Ab genes in the gastrointestinal (GI) contents, peripheral blood mononuclear cells (PBMC), and visceral organs of calves fed genetically modified Bt11 maize was examined by PCR in a subchronic 90-day performance study. Samples were collected from six Japanese Black/Holstein calves fed Bt11 maize and from six calves fed non-Bt maize. Fragments of maize zein (Ze1), invertase, chloroplast, and cry1Ab were detected inconsistently in the rumen fluid and rectal contents 5 and 18 h after feeding. The chloroplast DNA fragments of ribulose-1,5-bisphosphate carboxylase/oxygenase and tRNA were detected inconsistently in the PBMC, the visceral organs, and the longissimus muscle, while the cry1Ab gene was never detected in PBMC or in the visceral organs. These results suggest that feed-derived maize DNA was mostly degraded in the GI tract but that fragmented DNA was detectable in the GI contents as a possible source of transfer to calf tissues. These results also suggest that the recombinant cry1Ab genes were not transferred to the PBMC and tissues of calves fed Bt11 maize.  相似文献   

11.
A simple and rapid method for the identification of genetically modified (GM) papaya, derived from Line 55-1, was developed by modifying the Japanese official PCR method. Genomic DNA was directly extracted from the fresh fruit without the lyophilization step, using a commercial silica-based kit. To develop a duplex PCR method which simultaneously detects the GM papaya-specific gene and the intrinsic papain gene, the papain 2-5'/3' (amplicon size; 184 bp) primer pair for the detection of the papain gene was newly designed within the region of the products (211 bp) amplified using the papain 1-5'/-3' primer pair adopted in the Japanese official PCR method. To detect the GM papaya-specific gene, the primer pair Nos C-5'/CaM N-3' described in the Japanese official method was used. The DNA sequences of the GM papaya gene and the intrinsic papain gene were co-amplified using the PCR method in a single tube. The developed duplex PCR method allows the simultaneous detection of the products by means of agarose gel electrophoresis or microchip electrophoresis. The proposed method for GM papaya identification is simple and rapid.  相似文献   

12.
A detection method using the polymerase chain reaction (PCR) was developed to detect genetically modified (GM) potato (NewLeaf Y potato; NL-Y), of which the mandatory assessment has not yet been completed in Japan. The potato sucrose synthase gene was used as an internal control. We designed a primer pair to specifically detect NL-Y without false-positive results in processed potato foods infected with the potato virus Y (PVY). The DNA introduced into NL-Y using the primer pair could be detected from potato powder samples containing 0.05% NL-Y. In addition, we designed primer pairs for recognizing the CryIIIA gene to detect the NewLeaf potato (NL), NewLeaf Plus potato (NL-P) and NL-Y and for recognizing p-FMV in order to detect NL-P and NL-Y. The proposed method was applied to the detection of NL-Y in 26 processed potato foods and NL-Y was not detected in any samples.  相似文献   

13.
建立了转基因玉米Ly038、Mon863和Mon810的品系特异性基因多重PCR产物的毛细管电泳-紫外检测方法。根据三种转基因玉米的基因序列设计多重PCR引物,优化PCR扩增体系和条件,以8.0g/L羟乙基纤维素为筛分介质,用毛细管电泳-紫外检测法同时检测出三种玉米的品系特异性基因,11.195min内即可完成检测。用Origin软件对电泳结果进行分析并得出不同范围的DNA曲线方程,样品出峰时间的相对误差在1.03%~5.02%之间。并对纯化前后的样品进行了毛细管电泳分离的对照,发现PCR产物纯化后更适于紫外检测的毛细管电泳。多重PCR具有节约模板、节省试剂和缩短检测时间的优点,毛细管相对于传统的琼脂糖凝胶电泳,具有高效、快速、灵敏且经济环保的优点,所以此方法可广泛地应用于食品安全检测和临床检验等领域中。  相似文献   

14.
Detection of recombinant DNA from genetically modified papaya   总被引:3,自引:0,他引:3  
A method using polymerase chain reaction (PCR) was developed to detect the genetically modified (GM) papaya (55-1 line), of which the mandatory safety assessment has not been finished in Japan because of insufficient data. The papaya intrinsic papain gene was used as an internal control. The results of PCR amplification of the papain gene segment indicated that a commercial silica membrane type kit (QIAGEN DNeasy plant mini) was useful for extraction of DNA from papaya fruit, but not for extraction from canned papaya fruit. On the other hand, a commercial ion-exchange type kit (QIAGEN Genomic-tip) provided enough purified DNA for PCR from canned papaya fruit. Compared with the parental line and other commercial non-GM papayas, the DNA from GM papaya fruit provided specific amplification bands in PCR with five primer pairs (Nos. 2-6) including beta-glucuronidase and neomycin phosphotransferase II gene-specific ones. On the other hand, the primer pairs recognizing these genes showed false-positive results when we used DNAs from canned papaya. Therefore, we recommend that the primer pairs (Nos. 5 and 6) recognizing the sequences derived from two different species of organism should be used in order to detect specifically the GM papaya in canned fruits.  相似文献   

15.
16.
Specific legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. To this end, we have developed a robust, quantitative, sensitive, nine-plex ligation-dependent probe amplification method, GMO-MLPA, for event-specific detection of maize TC1507, MON810, NK603, MON863, BT176, T25, GA21, construct-specific detection of BT11, and detection of the endogenous hmga maize reference gene. Ligated probes are amplified by PCR. Amplicons are detected using capillary electrophoresis. Specific GMO signals are normalised relative to the signal from the endogenous hmga gene and quantified by comparing with known standard curves. The method is suitable for quantification in the 0–2% range. Agreement was obtained in 149 of 160 determinations when 11 known mixtures of GMO and 9 food and feed samples were analysed using the GMO-MLPA method and compared to results from quantitative real-time 5′-nuclease PCR. The presented method is, therefore, suitable for quantification purposes for food and feed containing the most common maize GMOs.  相似文献   

17.
Since 2001, the traceability and labelling of genetically modified organism (GMO) food and feed derived products are obligatory in the European Union. Genetically modified organisms (GMO) are commonly detected via PCR tests. These tests typically involve several steps: (1) screening (2) construct specific (3) event specific and (4) reference gene. Screening tests are based on sequences frequently used for GM development, allowing for the detection of a large number of GMOs. To improve GMO detection efficiency, using specific multiplex master mixes, we developed two real-time PCR screening duplex PCR assays for the detection of P35S/Tnos and Pnos/T35S sequences. By combining these tests, we were able to reduce the time and cost of analysis. For the Pnos/T35S duplex, good sensitivity was obtained using one of the mixes compared to the others. Both duplexes had 100% specificity when tested on DNA from GM maize, rapeseed and soybean. When the duplexes were tested on DNA containing various amounts of GM maize and soybean, the corresponding targets were detected. The detection limit of our methods was found to be between 2 and 8 haploid genome copies for both P35S/Tnos and Pnos/T35S tests. In summary, with high efficiency and good linearity, the proposed two screening duplexes allow for more efficient GMO detection.  相似文献   

18.
目的 建立公共引物介导的多重定量PCR法检测我国农业农村部允许进口的6种转基因大豆(包括:MON87701、DP356043、CV-127、MON87769、MON87705、MON87708)的方法.方法 设计并筛选出针对本研究涉及的6种转基因大豆对特异性引物,在每对特异性引物的5'端均加上一段公共引物,形成特异性嵌...  相似文献   

19.
A very sensitive and new real-time multiplex PCR method for the quantification of genetically modified (GM) maize crops in food materials was developed and validated for an ABI Prism 7700 Sequence Detection System. In the assay described, fluorescence-labelled TaqMan probes were chosen to detect the amplified DNA fragments during PCR. In this multiplex approach, maize-specific DNA (zein) and 35S-CaMV promoter-specific DNA fragments are amplified in the same tube. The method was tested for the detection and quantification of the four maize events that are approved in Europe and contain the 35S-CaMV promoter: Bt11, Bt176, Mon810 and T25 maize. Quantification was based on a standard curve prepared from certified maize flour reference material prepared by the Institute for Reference Materials and Measurements. Quantification within the range of the standard curve (0.05-1% GM maize) and up to 100% was possible. Repeatability of the method for each GM maize event was determined; coefficients of variations ranged from 28-40%. In addition, three internal Nestlé laboratories successfully applied this method and comparable results were obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号