首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A series of ZnO promoted Co/CeO2 catalysts were synthesized and characterized using XRD, TEM, H2-TPR, CO chemisorption, O2-TPO, IR-Py, and CO2-TPD. The effects of ZnO on the catalytic performances of Co/CeO2 were studied in ethanol steam reforming. It was found that the addition of ZnO facilitated the oxidation of Co0 via enhanced oxygen mobility of the CeO2 support which decreased the activity of Co/CeO2 in C–C bond cleavage of ethanol. 3 wt% ZnO promoted Co/CeO2 exhibited minimum CO and CH4 selectivity and maximum CO2 selectivity. This resulted from the combined effects of the following factors with increasing ZnO loading: (1) enhanced oxygen mobility of CeO2 facilitated the oxidation of CH x and CO to form CO2; (2) increased ZnO coverage on CeO2 surface reduced the interaction between CH x /CO and Co/CeO2; and (3) suppressed CO adsorption on Co0 reduced CO oxidation rate to form CO2. In addition, the addition of ZnO also modified the surface acidity and basicity of CeO2, which consequently affected the C2–C4 product distributions.  相似文献   

2.
An advanced TAP reactor is used for the first time to study CeO2 catalysed soot oxidation using labelled oxygen. In the absence of catalyst oxidation takes place above 500°C and mainly labelled oxidation species (CO and CO2) were observed. In the presence of catalyst it is shown that the gas-phase labelled oxygen replaces non-labelled lattice oxygen of CeO2 creating highly active oxygen. This highly active non-labelled oxygen reacts with soot giving CO and CO2. The creation of such active oxygen species starts from 400°C and it will decrease the soot oxidation temperature. The rate of gas-phase oxygen exchange by the CeO2 lattice oxygen and the rate of this very active lattice oxygen with soot are much faster than the reaction rate of 18O2 reacting with soot directly. Similarly the rate of active oxygen reaction with soot is much faster than the rate of its combination giving gas-phase O2.  相似文献   

3.
Temperature-programmed techniques were employed to investigate the interaction of CO with CuO–CeO2 prepared by the urea-nitrates combustion method. These catalysts exhibited high and stable CO oxidation activity at relatively low reaction temperatures (< 150 °C). The CO adsorption capacity and catalytic activity of the catalysts was analogous to the concentration of easily-reduced copper oxide surface species. TPD and TPSR results can be explained by a dual scheme of CO adsorption: (i) on oxidized sites, which get reduced with simultaneous formation of surface CO2 and (ii) on reduced sites created by the former interaction. 10–20% of adsorbed CO desorbs molecularly in the absence of gas-phase O2, but reacts totally towards CO2 in the presence of gas-phase O2. Inhibition by CO2 observed under steady-state CO oxidation conditions is due to CO2 adsorption as found by CO2-TPD.  相似文献   

4.
H. Yuan  D. Guo  X. Li  L. Yuan  W. Zhu  L. Chen  X. Qiu 《Fuel Cells》2009,9(2):121-127
Pt/CeO2/CNT catalysts were prepared by adsorbing Pt nanoparticles on the supports of CNTs coated with CeO2. The electrocatalytic performances in respect to the electrooxidation of chemisorbed CO were tested using potential step and stripping voltammetry methods under variable sweep rate and temperature conditions. At 10 mV s–1, the CO stripping voltammogram exhibited the peak splitting phenomenon. The oxidation charge and the peak potential of the two voltammetric peaks changed regularly with the number of Pt and CeO2 neighbours, the sweep rate, and the temperature. We considered that the low potential peak originated from the reaction of COads with hydroxyl groups on CeO2 adjacent to Pt sites, while the high potential peak came from the reaction of COads with hydroxyl groups produced on pure Pt. Furthermore, the experimental results of the peak potential against the logarithm of the sweep rate and the logarithm of the current maximum time against the step potential were plotted and intersecting lines with different slopes in high and low potential regions in the plot were observed. The lines intersected at lower potentials on the Pt/CeO2/CNT electrode than on the Pt/CNT electrode, which was attributed to the contribution of hydroxyl groups on CeO2.  相似文献   

5.
《Ceramics International》2016,42(6):6728-6737
Synthesis of CeO2–Fe2O3 nanoparticles via propylene oxide (PO) aided sol–gel method for the production of solar fuels via thermochemical H2O/CO2 splitting cycles is reported in this paper. For the synthesis of CeO2–Fe2O3, cerium nitrate hexahydrate and iron nitrate nonahydrate were first dissolved in ethanol and then PO was added to this mixture as a proton scavenger to achieve the gel formation. Synthesized CeO2–Fe2O3 gel was aged, dried, and then calcined in air to achieve the desired phase composition. Influence of different synthesis parameters on physico-chemical properties of sol-gel derived CeO2–Fe2O3 was explored in detail by using various analytical methods such as powder x-ray diffraction (PXRD), BET surface area analyzer (BET), x-ray energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR–TEM). According to the findings, at all experimental conditions, phase/chemical composition of sol–gel derived CeO2–Fe2O3 was observed to be unaltered. The SSA and pore volume was increased with the upsurge in the amount of PO used during sol–gel synthesis and decreased with the rise in the calcination temperature and dwell time. In contrast, the crystallite size was enlarged with the increase in the calcination temperature and dwell time. The nanoparticle morphology of the sol–gel derived CeO2–Fe2O3 was verified with the help of SEM/TEM analysis. Thermochemical CO production ability of sol–gel derived CeO2–Fe2O3 was investigated by performing thermogravimetric thermal reduction and CO2 splitting experiments in the temperature range of 1000–1400 °C. Reported results indicate that the sol–gel derived CeO2–Fe2O3 produced higher amounts of O2 (69.134 μmol/g) and CO (124.013 μmol/g) as compared to previously investigated CeO2 and CeO2–Fe2O3 in multiple thermochemical cycles. It was also observed that the redox reactivity and thermal stability of sol–gel derived CeO2–Fe2O3 remained unchanged as it produced constant amounts of O2 and CO in eight successive thermochemical cycles.  相似文献   

6.
Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au0 as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3+ ions on CeO2 increases at the expense of Au0. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on -Al2O2 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O2. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mol g-1 s-1 at 250 and 300 °C respectively. Activation energy (E a) values are 106 and 90 kJ mol-1 for CO + O2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.  相似文献   

7.
CO oxidation at low temperature over Pd/CeO2–TiO2 catalyst was carried out in the feed containing different contents of water vapor (H2O). A positive effect of H2O was observed on the catalytic performance of Pd/CeO2–TiO2 in CO oxidation at low temperature. The extent of this effect depends on the content of H2O in the feed; with a H2O content being 2.5 vol%, the catalyst Pd/CeO2–TiO2 exhibits the highest stability (longest life time for CO oxidation at 80 °C). The results of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction (TPReaction) reaction illustrated that H2O in the feed supplies sufficient OH groups in the presence of O2, which can react with adsorbed CO on Pd species to produce CO2. Moreover, H2O may also enhance the adsorption of CO and suppress the formation of some carbonate species.  相似文献   

8.
The effect of CeO2 loading on the surface properties and catalytic behaviors of CeO2–Al2O3-supported Pd catalysts was studied in the process of steam reforming of methane. The catalysts were characterized by SBET, X-ray diffraction (XRD), temperature-programmed reduction (TPR), UV–vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR). The XRD measurements indicated that palladium particles on the surface of fresh and reduced catalysts are well dispersed. TPR experiments revealed a heterogeneous distribution of PdO species over CeO2–Al2O3 supports; one fraction of large particles, reducible at room temperature, another fraction interacting with CeO2 and Al2O3, reducible at higher temperatures of 347 and 423 K, respectively. The PdO species reducible at room temperature showed lower CO adsorption relative to the PdO species reducible at high temperature. In contrast to Pd/Al2O3, the FTIR results revealed that CeO2-containing catalyst with CeO2 loading ≥12 wt.% show lower ratio (LF/HF) between the intensity of the CO bands in the bridging mode at low frequency (LF) and the linear mode at high frequency (HF). This ratio was constant with increasing the temperature of reduction. The FTIR spectra and the measurement of Pd dispersion suggested that Pd surface becomes partially covered with ceria at all temperature of reduction and with increasing ceria loading in Pd/CeO2–Al2O3 catalysts. Although the PdO/Al2O3 showed higher Pd dispersion compared to that of CeO2-containing catalysts, the addition of ceria resulted in an increase of the turnover rate and specific rate to steam reforming of methane. The CH4 turnover rate of Pd/CeO2–Al2O3 catalysts with ceria loading ≥12 wt.% was around four orders of magnitude higher compared to that of Pd/Al2O3 catalyst. The increase of the activity of the catalysts was attributed to various effects of CeO2 such as: (i) change of superficial Pd structure with blocking of Pd sites; (ii) the jumping of oxygen (O*) from ceria to Pd surface, which can decrease the carbon formation on Pd surface. Considering that these effects of CeO2 are opposite to changes of the reaction rate, the increase of specific reaction rate with enhancing the ceria loading suggests that net effect results in the increase of the accessibility of CH4 to metal active sites.  相似文献   

9.
A CeO2-modified Ni catalyst has been studied as a substitute for Ni bulk catalyst in a CO removal reaction using various characterization methods. CO removal was enhanced slightly and presented at lower reaction temperatures following promotion of CeO2 on Ni. The enhanced ability to reduce CO was mainly a result of methanation rather than WGS during a CO removal reaction. Based on X-ray diffraction and temperature-programmed reduction, CeO2 appeared to change the Ni surface properties. Because the bond strength between C and O atoms in CO was weakened by the surface oxygen of CeO2 on Ni, the CeO2-promoted Ni catalyst showed higher CO conversion and lower selectivity to WGS than Ni bulk catalyst.  相似文献   

10.
Bulk Ni2P and CeO2-containing bulk Ni2P (Ce?CNi2P(x), where x represents the Ce/Ni atomic ratio) were prepared by a co-precipitation method followed by an in situ H2 temperature-programmed reduction procedure. The catalysts were characterized by XRD, CO chemisorption, TEM, N2 adsorption?Cdesorption, XPS and X-ray absorption spectroscopy (XAS). Their hydrodenitrogenation performances were studied using quinoline (Q) and decahydroquinoline as the model compounds. Both the hydrogenation and C?CN bond cleavage activities of Ni2P were improved by the introduction of CeO2. CeO2 mainly accelerated the denitrogenation of Q to propylcyclohexane rather than to propylbenzene. XRD and XPS measurements revealed that the Ce species in Ce?CNi2P(x) were mainly in the oxide form and both Ce4+ and Ce3+ species coexisted on the surface of the catalysts. Addition of CeO2 significantly decreased the particle size of Ni2P, resulting in increased specific surface areas and CO uptakes, possibly due to the strong interaction between the Ce species and Ni2P. At a Ce/Ni atomic ratio higher than 0.25, segregation of CeO2 took place. XAS results of the passivated catalysts showed that CeO2 not only affected the oxidability of Ni2P but also led to the formation of metallic Ni. The promoting effect of CeO2 was discussed by considering the electronic interactions between Ce species and Ni2P as well as the presence of the amorphous Ni and low valence Ce3+ species.  相似文献   

11.
The preparation of bimetallic Au-Cu catalysts via the decomposition of the double complex salt [Au(en)2]2[Cu(C2O4)2]3 · 8H2O is considered. It is found that this method of preparation allows us to selectively obtain Au0.4Cu0.6 solid solution nanoparticles on the surface of a support. The composition of the particles corresponds to the stoichiometry of the double complex salt. The properties of bimetallic Au-Cu/CeO2 catalyst and monometallic Au/CeO2 and Cu/CeO2 catalysts were studied during the preferential oxidation of CO in a mixture containing CO2 and H2O. The experiments were performed in a catalytic flow system within a temperature range of 50–250°C with a mixture of the following composition, vol %: CO, 1; O2, 0.6; H2O, 10; CO2, 20; H2, 60; and the balance, He. The weight hourly space velocity (WHSV) was 276000 cm3/(g h). The bimetallic catalyst made it possible to oxidize a considerably larger amount of CO with higher selectivity with CO2 and H2O in the mixture, relative to the monometallic catalysts. The preferential oxidation of carbon monoxide in the presence of hydrogen is a promising method for the deep purification of hydrogen-containing gas mixtures in order to remove carbon monoxide. The purified hydrogen-containing gas can be used to feed portable power units based on low-temperature proton-exchange membrane fuel cells, for the synthesis of ammonia, and for hydrogenation in fine organic synthesis.  相似文献   

12.
Activity and selectivity of selective CO oxidation in an H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts were studied. Effects of the metaloxide types and metaloxide molar ratios were investigated. XRD, SEM, and N2 physisorption techniques were used to characterize the catalysts. All catalysts showed mesoporous structure. The best activity was obtained from 80/10/10 Co3O4/CeO2/ZrO2 catalyst, which resulted in 90% CO conversion at 200°C and selectivity greater than 80% at 125°C. Activity of the Co3O4/CeO2/ZrO2 catalyst increased with increase in Co3O4 molar ratio.  相似文献   

13.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

14.
CeO2/BaF2 was used as the catalyst for the oxidative coupling of methane (OCM). At 800°C and CH4O2=2.71,CH4 conversion of 34% with C2 hydrocarbon selectivity of 54.3% was obtained. XRD measurement showed that partial anion (O2–,F) and/or cation (Ce4+,Ba2+) exchange between CeO2 and BaF2 lattices occurred. ESR study showed that O species existed on degassed catalyst. XPS study revealed that, when BaF2 was added to CeO2, the binding energy of Be 3d5/2 was 2.2 eV lower than that in CeO2, and the electron-enriched lattice oxygen species was detected. XPS, ESR and Raman study showed that, under O2 adsorbing conditions, O 2 2– and O 2 species were detected on CeO2/BaF2.This work was supported by the State Key Laboratory for Physical Chemistry of the solid surface and the National Science Foundation of China.  相似文献   

15.
The Ba-hexaaluminate doped with CeO2 nanoparticles with high surface area for catalytic combustion have been prepared by using the alumina sol as the (NH4)2CO3 coprecipitation precursor and supercritical drying method. The catalysts are composed of the rod-like particles and granular ones. The CeO2/BaAl12O19−α catalyst possesses the highest surface area (83.5 m2/g) and the smallest CeO2 mean crystallite size (24.3 nm). Introduction of transition metal ion into the Al2O3 spinel leads to the increase of the catalytic activity. Nevertheless the hexaaluminate cannot be obtained when further increasing the introduction, the components of the main crystalline phases are Al2.267O4 and CeO2. The CeO2/BaFeMnAl10O19−α catalyst possesses the lowest complete conversion of methane temperature, probably due to the high surface area and the excellent performance of activating oxygen.  相似文献   

16.
CeO2‐CrOy loaded on γ‐Al2O3 was investigated in this work for the oxidative dehydrogenation (ODH) of propane under oxygen‐free conditions. The ODH experiments of propane were conducted in a fluidized bed at 500°C‐600°C under 0.1 Mpa. The prepared catalyst was characterized by N2 adsorption‐desorption measurements, H2‐temperature‐programmed reduction, O2‐temperature‐programmed desorption, NH3‐temperature‐programmed desorption, x‐ray photoelectron spectroscopy, and x‐ray diffraction. The change in the selectivity of propylene resulted from the thermal cracking of the propane and the competition for lattice oxygen in the catalyst between propylene formation and propane and propylene combustion. Therefore, to achieve higher propylene yield in the industry, the reaction temperature should be 550°C‐575°C for the 17.5Cr‐2Ce/Al catalyst. The results of H2‐TPR (from 0.2218 mmol/g‐0.3208 mmol/g) revealed that the addition of CeO2 can enhance the oxygen capacity of CrOy. Compared with that for 17.5Cr/Al, the conversion can be enhanced from 22.4% to 28.5% and the selectivity of propylene can be improved from 72.2% to 75.9% for the 17.5Cr‐2Ce/Al catalyst. In addition, CeO2 can inhibit the evolution of lattice oxygen (O2?) to electrophilic oxygen species (O2?), causing the average COx (CO and CO2) selectivity to decrease from 9.64% to 6.31%.  相似文献   

17.
Multishell hollow CuO microbox was synthesized by a template method and the Ce(IV) nitrate solution was impregnated into the hollow cavity of the CuO support. The as-prepared catalysts were characterized by FESEM, TEM, XRD, N2 physisorption and H2-TPR. It is found that the alternate CuO and CeO2 multishell structure reduces the agglomeration of CuO species and improves the dispersion of CeO2. The special structure ensures even distribution of the two species in the material matrix and the optimum ratio of CeO2 to CuO provides two-component active sites with high concentration. Thus, the wider full CO conversion window and higher CO2 selectivity are achieved over the 30CeO2/CuO microbox catalyst.  相似文献   

18.
A new series of Ni-Rh bimetallic catalysts with different Ni and Rh loadings on a high-surface-area CeO2 was developed for the reforming of bio-ethanol at low-temperature (below 450 °C) to produce H2-rich gas for on-site or on-board fuel cell applications. Oxidative steam reforming of ethanol (OSRE) over a Ni-Rh/CeO2 catalyst containing 5 wt% Ni and 1 wt% Rh was found to be more efficient offering about 100% ethanol conversion at 375 °C with high H2 and CO2 selectivity and low CO selectivity compared to the steam reforming of ethanol (SRE) reaction which required a higher temperature of about 450 °C to achieve 100% ethanol conversion. The high temperature SRE reaction favors the formation of large amount of CO, which would make the downsteam CO cleanup more complicated for polymer electrolyte membrane fuel cell (PEMFC). The presence of O2 in the feed gas was found to greatly enhance the conversion of ethanol to produce H2 and CO2 as major products. Increase in Ni content above 5 wt% in the catalyst formulation decreased the H2 selectivity while the selectivity of undesirable CH4 and acetaldehyde increased. The 1 wt% Rh/CeO2 catalyst was twice as active as 10 wt% Ni/CO2 catalyst in terms of ethanol conversion and acetaldehyde selectivity and this indicated that Rh was more effective in C–C bond cleavage than Ni. The reaction was found to proceed through the formation of acetaldehyde intermediate, which subsequently underwent decomposition to produce a mixture of CO and CH4 or reforming with H2O and O2 to produce CO, CO2 and H2. The role of Rh is mainly to cleave the C–C and C–H bonds of ethanol to produce H2 and COx while Ni addition helps converting CO into CO2 and H2 by WGS reaction under the conditions employed.  相似文献   

19.
This work discusses the reinforcement effect of elongated CeAl11O18 phase on multifunctional Al2O3/Ti composites by adding CeO2 to inhibit interfacial reaction and strengthen interface for inducing optimized performances. For this purpose, Al2O3/Ti composite with different contents of CeO2 was fabricated and the microstructure, mechanical and electrical properties were studied. Results indicated that after CeO2 was added, elongated CeAl11O18 phase was formed within these composites. Owing to inhibited interfacial reaction between Al2O3 and Ti, Ti content was increased and compositions of composites were calculated using Rietveld method based on X-ray diffraction patterns. Attributed to the strengthening and toughening effects of CeAl11O18 phase, 2 mol% CeO2 added composite showed the highest flexural strength and fracture toughness of 576 MPa and 5.15 MPa·m1/2, which increased by 21% and 20% compared to Al2O3/Ti composite without CeO2 addition. In this case, crack bridging by both Ti and CeAl11O18 particles was the major toughening mechanism and the additional fracture toughness caused by CeAl11O18 toughening effect reached a maximum. The role (crack bridging or particle pull-out mechanism) of CeAl11O18 in toughening Al2O3/Ti composites depended on the aspect ratio of these elongated particles, which was directly related to CeO2 content. Because of the inhibition of interfacial reaction and the increase in Ti content, excellent electrical resistivity of composites after CeO2 addition was maintained in spite of the formation of insulated CeAl11O18 phase. All samples showed relatively low electrical resistivity of ~10−3 Ωcm.  相似文献   

20.
A series of CeO2-La2O3 supported ruthenium catalysts were prepared by co-precipitation method and the as-obtained samples were characterized by N2 physisorption, X-ray diffraction, CO chemisorption, H2-TPR, H2-TPD and XPS. The activity test shows that ammonia concentration of the catalyst with 10% La is 13.9% at 10 MPa, 10,000 h?1, 450 °C, which is 17% higher than that of Ru/CeO2. La doping can improve the activity of Ru-ceria catalyst for ammonia synthesis by facilitating the reduction of oxygen which subsists in the cerium oxide surface. In addition, it can be realized that the test of catalyst stability proves the stability performance of Ru/CeO2-La2O3 catalyst within the reaction time of 55 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号