首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction kinetics for NiCr2O4 formation and the diffusion of Cr3+ ions into single-crystal NiO were studied between 1300° and 1600°C in air. The experimental activation energy for NiCr2O4 formation was about 83 kcal/mol. After incubation, NiCr2O4 formed by a diffusion-controlled process. The origin of pores at the NiO/NiCr2O4 interface is discussed. The concentration profiles of Cr3+ in NiO were linear because the interdiffusion coefficient was directly proportional to the mol fraction Cr3+. Theoretical considerations indicate that the interdiffusion coefficient equals 3/2 the self-diffusion coefficient of Cr3+, which is rate-determining. The interdiffusion coefficient at 1 mol% Cr2O3 can be expressed as =4×10−3 exp (−55,000/RT) cm2 s−1.  相似文献   

2.
The rate of formation of NiAl2O4 by reaction between single crystals of NiO and Al2O3 can be described by k = 1.1 × 104 exp (−108,000 ± 5,000/ RT ) cm2/s. In NiO the behavior of D as a function of concentration supports the Lidiard theory of diffusion by impurity-vacancy pairs. A good fit of the theory to the experimental results was obtained by assuming that Al3+ ions diffuse as [AlNi· VNi]'pairs. The diffusion coefficient of pairs, Dp , obeys the equation 6.6 × 10−2 exp (−54,000 ± 3,000/ RT ) cm2/s. The free energy of association for pairs was calculated to range from 6.5 kcal/mol at 1789°C to 9.0 kcal/mol at 1540°C. The interdiffusion coefficients in the spinel showed a constant small increase with increasing concentration of Al3+ dissolved in the spinel.  相似文献   

3.
A quantitative X-ray technique for measuring precipitation strains has not been previously applied in metallic or oxide systems. The Warren-Averbach analysis of strain was used to determine the buildup of elastic strain energy in the spinel crystalline solution matrix (gross composition = 60 mol% MgAl2O2+ 40 mol% Cr2O3) during the isothermal (1135°C) precipitation of a metastable (coherent) monoclinic phase. The elastic strain energy of the spinel crystalline solution matrix increased to a maximum of about 3.1 × 107 ergs/cm3 for a reaction time of 8 h. There was a marked decrease in the elastic strain energy during the initial precipitation of the equilibrium corundum crystalline solution with the composition (Al3+0.72 Cr3+0.25)O3. An overall diffusion activation energy for precipitation of the mono-clinic phase was approximately 86 kcal/mol.  相似文献   

4.
The electrical properties of Sr0.5Ba0.3TiO3 in the presence of Nb2O5 as a donor, 3Li2O · 2SiO2 as a sintering agent, and Bi2O3 as a dopant have been studied. When the compositions of the ceramics were 1 mol Sr0.7Ba0.3TiO3+ 0.5 mol% Nb2O5+ 2 mol% 3Li2O · 2SiO2+ 0.2 mol% Bi2O3, the ceramics were sintered at 1100°C and exhibited the following characteristics: apparent dielectric constant ɛ, 25000; loss factor tan δ, 2%; insulating resistivity ρj, 1010Ω· cm; variation of dielectric constant with temperature Δɛ/ɛ (−25° to +85°C), +10%, −14%. ɛ and tan δ show only small changes with frequency. The study shows this ceramic can be used in multilayer technology.  相似文献   

5.
The cation diffusivities in the lattice and along dislocations and grain boundaries have been measured on sintered polycrysals of Cr2O3; and Cr2Cr2O3-0.09 wt% Y2O3 at1100°C and at the pO2 corresponding to that of Cr/Cr2O3 equilibrium at that temperature. Results for lattice and dislocation diffusivities in pure Cr2O3 are in good agreement with previous work. The present results indicate that yttrium additions have negligible effect on lattice and dislocation diffusion. However, grain-boundary diffusion in pure Cr2O3 is significantly slower than grain-boundary diffusion in Cr2O3-0.09 wt% Y2O3. The results are discussed in terms of their implications for the reactive-element effect in high-temperature oxidation of chromium-containing alloys.  相似文献   

6.
Electrical conductivity and thermoelectric power were measured on sintered α-Sb2O4 at 250° to 780°C. Oxygen partial pressure dependence of the conductivity and sign of the Seebeck coefficient showed α-Sb2O4 to be a p -type semiconductor above 600°C in the oxygen pressure range of lo5 to 102 Pa. A hopping conduction was proposed from very small hole mobility with an activation energy of 18 kJ/mol.  相似文献   

7.
The thermal diffusivities of polycrystalline Be4B, Be2B, and BeB6 were measured by the flash method. Generally, the thermal diffusivities at a given temperature decrease with increasing boron content. The thermal diffusivities of Be4B, Be2B, and BeB6 varied from 0.13 to 0.072 to 0.031 cm2/s, respectively, at 200°C and from 0.068 to 0.038 to 0.007 cm2/s at 1000°C. Heat transport in BeB6 is expected to occur almost entirely by phonon conduction, whereas electronic conduction probably plays a major role in Be4B and Be2B. Analytical expressions for the thermal diffusivities (α) of Be4B and Be2B at 200° to 1000°C and of BeB6 at 25° to 1500°C are: α(Be4B)=1/(5.83+9.05×10 3 T ), α(Be2B)=1/(10.92+1.40×10 2 T ), and α(BeB6)=5.60×10 4+5.72/ T +77.3/T2-4.09×104/T3 cm2/s.  相似文献   

8.
The phase boundary between CrO2 and Cr2O3 was reinvestigated under high O2 pressures by using a new type of gas compressor. The boundary curve can be represented as log Po2= 7.16-(3579/ T ). Using the observed data, Δ G °, Δ H °, and Δ S ° for the reaction 2CrO2⇋Cr2O3+½O2 were calculated to be: Δ G °= -(1.55/100) T +7.60 kcal/mol, Δ H °= -8.19 kcal/mol, and Δ S °= (-15.8/ T )+0.0155 kcal/mol.  相似文献   

9.
The formation of ZnAl2O4 spinel in diffusion couples of Al2O3 and ZnO was investigated between 1000° and 1390°C in air and in air containing 4.8 vol% Cl2 by X-ray diffraction, electron probe microanalysis, and scanning electron microscopy. The rate of formation of a spinel layer obeyed a parabolic rate law and was accelerated remarkably by the presence of Cl2. The interdiffusion coefficient, , and the activation energy, E, were calculated to be 10−8 to 10−9 cm2/s and 123 kcal/mol (514 kJ/mol) in air and 10−7 cm2/s and 31 kcal/mol (130 kJ/mol) in air containing 4.8 vol% Cl2, respectively.  相似文献   

10.
The thermal conductivities of sintered pellets of ThO2-1.3 wt% U02 were measured at 60°C before and after irradiation. The irradiation temperature was below 156°C, and the exposures varied from 3.1 × 1014 to 4.7 × loL7 fissions/cm3. Each fission fragment damaged a region of 2.2 × 10-16 cm3 with the reduction in conductivity saturating by about 1017 fissions/cm3. Samples having exposures from 1015 to 1016 fissions/cm3 were annealed isothermally at 651 °C or isochronally from 300° to 1200° C to study the annealing of damage. Most of the annealing occurred between 500° and 900°C. The width of this interval plus the slow isothermal annealing suggest that the damage is annealed by a number of single order processes with a spectrum of activation energies from 1.8 to 3.9 eV or, less probably, by a high order process with an activation energy of 3.55 ± 0.4 eV.  相似文献   

11.
Phase-pure perovskite Pb(Zn x Mg1– x )1/3Nb2/3O3 solid solution (PZ x M1– x N) is obtained for x ≦ 0.7 by heating a milled stoichiometric mixture of PbO, Mg(OH)2, Nb2O5, and 2ZnCO3·3Zn(OH)2·H2O at 1100°C for 1 h. Percent perovskite ( f P) with respect to total crystalline phase decreases with increasing temperature of subsequent heating then increases to 900°C for the mixtures where x ≦ 0.8 and milled for 3 h. For mixtures with x = 0.9 and x = 1, f P decreases monotonically. Curie temperature increases almost linearly with increasing x up to x = 0.7. The maximum dielectric constant at 1 kHz is 2×104 and 1.7×104 for the mixture with x = 0.4 and x = 0.7, respectively. The stabilization mechanism of strained perovskite is discussed.  相似文献   

12.
The knowledge of the steady-state stress for plastic deformation as a function of temperature and strain rate is essential for hot-forming superconducting material into commercially useful shapes. In this paper, results are presented on the experimental determination of the rheology of fully dense polycrystalline Y1Ba2Cu3O7−x superconducting material at temperatures ranging from 750° to 950°C and strain rates of 10−4, 10−5, and 10−6 s−1. The data are best fitted by a power law: ε(s−1)=8.9 × 10−17. (s−1) σ2.5 (Pa) exp [−2.01 × 105(J·mol−1)|RT]. X-ray analysis shows that the superconducting material retains its phase composition after nearly 70% total strain of the sample. A strong anisotropy in the resistivity of the deformed samples is observed because of the development of a preferred orientation of the a or b axis of Y1Ba2Cu3O7−x orthorhombic perovskite single crystals perpendicular to the principal maximum compressive stress.  相似文献   

13.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

14.
A bulk density of 85% of the theoretical density was achieved by sintering a powder compact of YBa2Cu4O8 (124) at 850°C in flowing oxygen at 1 atm (≅105 Pa). This value is very close to that obtained by the hot isostatic pressure technique (90%). The superconducting properties of the sample were characterized by magnetization and ac susceptibility techniques. The magnetization critical current density at 20 K in zero field was determined to be ∼5 × 104 A/cm2, and the superconducting transition temperatures were found to be 77 K for the bulk material and 82 K for the granular phase. The powder X-ray diffraction and ac susceptibility studies revealed the sintered 124 material to be single phase.  相似文献   

15.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

16.
Purified air is passed over a specimen of YBa2Cu3O7– x at 890°C; the vaporized substances are condensed in a pure alumina tube, then subjected to inductively controlled plasma analysis. Vapor pressure values of 2.5 × 10−5 Pa for BaO( g ), 1.2 × 10−4 Pa for Cu( g ), and 2.2 × 10−5 Pa for CuO( g ) are obtained under 2.1 × 104 Pa (0.21 bar) of oxygen pressure. No Y vapor is detected at this temperature.  相似文献   

17.
The microstructure and nonlinear current-voltage characteristics of Mn3O4-doped ZnO-V2O5 ceramics, microwave-sintered at 800°-1200°C for 10 min, have been investigated. A high density (96% of the theoretical density) has been achieved. The incorporation of Mn3O4 additives does not significantly alter the densification behavior of the ZnO-V2O5 materials, but rather pronouncedly increases the nonlinear coefficient (α= 23.5) and markedly suppresses their leakage current density ( J L= 2.4 10-6 A/cm2). On the other hand, the intrinsic properties of the materials, including the Schottky barrier height (Phib) and the donor density ( N d), are only moderately modified; that is, Phib= 1.16 eV and N d= 5.4 1017/cm3. X-ray diffractometry analyses and energy-dispersive X-ray microanalyses (via scanning electron microscopy) indicate that the V2O5 species facilitate the densification and the development of microstructure via the formation of a liquid phase (Zn3(VO4)2) along the grain boundaries, whereas the Mn3O4 species markedly enhance the nonohmic behavior of the ZnO-V2O5 materials by forming the surface states along the grain boundaries.  相似文献   

18.
Phase relations in the spinel region of the system FeO-Fe2O3-Al2O3 were determined in CO2 at 1300°, 1400°, and 15000°C and for partial oxygen pressures of 4 × 10−7 and 7 × 10−10 atmospheres at 15OO°C. The spinel field extends continuously from Fe3O4-x to FeAl2O4+z.  相似文献   

19.
Ehdectrical resistivity and Hall voltage were measured between 4.2 and 300 K on T12O3 crystals annealehd at 550°C for 24 h under oxygen pressures of 2×104 to 107 Pa. The carrier concentration varied from 7.97×1020 to 5.08×1020 cm−3, the low-temperature Hall mobility from 131 to 189 cm2/V.s, and the Fermi level from 7.1×104 to 5.05×104 J/mol above the bottom of the conduction band as P 02 was increased from 2×104 to 107 Pa. The dependence of Fermi level on carrier concentration and P 0l was consistent with a parabolic density-of-states function describing the conduction band. Over the entire region of oxygen pressure investigated, Fermi-Dirac statistics were required to describe the dependence of carrier concentration on P 02.  相似文献   

20.
An investigation of the properties of high-purity (>99 wt%) tantalum tungstates (Ta22W4O67, Ta, WO8, and Ta16W18O94) included determination of density (bulk and theoretical), refined lattice constants, maximum use temperatures, micro-hardness, heat capacity, thermal expansion (contraction) and diffusivity, calculated thermal conductivity, and electrical resistivity. Usable to ∼ 1700 K in air or inert atmospheres, these tantalum tungstates have theoretical densities of 7.3 to 8.5 g/cm3, are relatively soft (120 to 655 kg/mm2 hardnesses), and are electrical insulators (6× 103 to 2× 108Ω.cm resistivities). The distinguishing properties of the materials are their thermal expansion (average CTE values from + 0.6×10−8/K to −5.1× 10−6/K at 293 to 1273 K), thermal expansion hysteresis with minimal observable microcracking, and thermal diffusivity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号