首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of BaF2-CaF2 particle morphology on National Aeronautics and Space Administration (NASA) PS304 feedstock powder flowability were investigated, BaF2-CaF2 eutectic powders were fabricated by comminution (producing an angular morphology) and by gas atomization (producing a spherical morphology). The fluoride powders were added incrementally to the other powder constituents of the NASA PS304 feedstock, (Ni-Cr, Cr2O3, and Ag powders). A linear relationship between flow time and concentration of the BaF2-CaF2 powder was found. The flow of the powder blend with spherical BaF2-CaF2 was better than that with angular BaF2-CaF2. The flowability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. However, the flow of the powder blend with spherical fluorides was independent of fluoride concentration. The results suggest that for this material blend, particle morphology plays a significant role in flow behavior, offering potential methods to improve powder flowability and enhance the commercial potential. These findings may be applicable to other difficult-to-flow powders such as cohesive ceramics.  相似文献   

2.
Composite coatings composed of titanium nitride, TiN, and diboride, TiB2, were reactively produced by the electrothermally exploded powder spray technique, in which feedstock powder was prepared from titanium and boron nitride particles. The microstructure of the coating was composed of titanium-ceramic particles the size of which were on the order of several nanometers to a few hundred nanometers. Such reactive thermal spraying brought base-metal saturation into a coating layer at the early stages of coating formation. The ceramic composite spray using feedstock of TiN and TiB2 particles preferentially brought a new phase of cubic titanium boronitride together with TiN and TiB2 into a coating. On comparing such a coating to one produced by the conventional method, the reactive thermal spray coating was richer in TiN and TiB2 due to the excess nitrogen in the feedstock.  相似文献   

3.
Aluminum with 55 and 75 vol.% SiC powders were ball milled as plasma spray feedstock. The feedstock was deposited onto a graphite substrate to form a freestanding composite by air plasma spraying. The microstructure characteristics of the sprayed composite were investigated by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The SiC volume fraction and porosity in the sprayed composites depend on plasma spray conditions. The silicon phase was formed in the sprayed composites in some plasma spray conditions, and its amount was related to the input of electrical power into the plasma spray. The mechanism of silicon formation was studied. In the sprayed composites, no reaction products could be observed in the Al/SiC interface. Impurity materials from ball media, stainless steel, and ZrO2 reacted with aluminum and silicon to form complex compounds during plasma spray deposition.  相似文献   

4.
TiO2 photocatalytic coatings were deposited through high velocity oxy-fuel spray using anatase powder and rutile powder as feedstock. The as-sprayed TiO2 coating was composed of anatase phase and rutile phase. The anatase content in the coating was significantly influenced by fuel gas flow and melting condition of spray powder. A high anatase content of 35% was achieved for the coating deposited using rutile powder. The anatase content in the coating deposited using anatase powder reached 55-65%. The as-sprayed TiO2 coating was photocatalytically reactive for degradation of acetaldehyde in air. The photocatalytic activity was influenced by spray conditions. The surface morphology and phase structure of coatings deposited at different spray conditions were investigated to clarify the relationship between the coating microstructure and activity. It is found that the photocatalytic activity is significantly influenced by anatase content and surface area.  相似文献   

5.
Thick TiB2-TiC0.3N0.7 based composite coatings were deposited by reactive plasma spraying (RPS) successfully in air. The influence to the coating properties (morphology, Vickers microhardness and corrosion resistant property) with Cr addition in the thermal spray powder and TiB2-TiC0.3N0.7 based coatings treated by laser were investigated. The phase composition, structure and properties of composite coatings were studied using XRD, SEM, EDS, Vickers microhardness and electrochemical testers. The results show that the Vickers microhardness values and the density of laser surface treated coatings are improved significantly. The Cr addition in the thermal spray powder can increase the density, improve the wettability of ceramic phases, uniform the phase distribution and enhance the corrosion-resistant property of coatings. However, due to lower microhardness of metal Cr than ceramic phases in coatings, the Vickers microhardness values of plasma sprayed coatings and plasma sprayed coatings with laser surface treatment are a little lower than that of each coating without Cr addition in the thermal spray powder.  相似文献   

6.
The correlation between the performance of plasma spray coatings and feedstock powder properties is not fully understood. To demonstrate this correlation, eight spray-dried zirconia powders containing a mass fraction of 20% Y2O3 (yttria) were characterized with respect to their physical, bulk chemical, and surface chemical properties. The same powders were plasma spray deposited as coatings, and their relative performance was evaluated using a thermal rupture test developed by Pratt and Whitney. The specific powder properties studied were chemical composition, binder content, particle size distribution, powder morphology, interface chemistry, thermogravimetry, phase composition, and specific surface area. Among the characterization data, the binder-related properties of the powder correlated most strongly with the thermal rupture test data. Specifically, higher binder contents were associated with poor thermal rupture test performance.  相似文献   

7.
Previous studies have shown that the fabrication of metal matrix composites (MMCs) by cold spraying is effective and promising. When light materials, such as SiC and Al2O3, were used as reinforcements, it was diffcuclt to obtain a high volume fraction of hard phase in the composite just through the simple powder mixture. Therefore, in this study, a Ni-coated Al2O3 powder, which was produced through hydrothermal hydrogen reduction method, was employed aiming at increasing the volume fraction of ceramic particles in the deposited composite coating. It was found that a dense Ni-Al2O3 composite coating could be deposited with the Ni-coated Al2O3 powder under the present spray conditions. X-ray diffraction analysis indicated that the composite coating had the same phase structures as the feedstock. The volume fraction of Al2O3 in the composite was about 29 ± 6 vol.%, which is less than that in the feedstock (nominal: 40-45 vol.%) due to the rebound of some Al2O3 particulates upon kinetic impacting. The microhardness of the composite coating was about 173 ± 33Hv0.2.  相似文献   

8.
祝弘滨  李辉  栗卓新 《焊接学报》2014,35(11):43-46
采用团聚烧结方法制备TiB2-Ni复合粉末喂料,并采用大气等离子喷涂和高速火焰喷涂两种喷涂方法制备了TiB2-Ni涂层,比较分析了两种涂层的显微组织、物相组成、孔隙率、硬度和断裂韧性.结果表明,与等离子喷涂相比,高速火焰喷涂制备的TiB2-Ni涂层具有更高的致密度,TiB2含量,硬度和断裂韧性.两种涂层中TiB2都没有发生明显的脱硼,氧化,但等离子喷涂过程中TiB2向金属相中发生了溶解生成了大量脆性Ni20Ti3B6相,并降低了涂层中TiB2的含量,这是涂层硬度和断裂韧性相对较低的主要原因.  相似文献   

9.
NiCr clad hexagonal BN powder (NiCr/hBN) was added to NiCr/Cr3C2 feedstock to improve the tribological properties of chromium carbide nichrome coating. The microstructure, flowability and apparent density of the composite powder, as well as the structure and mechanical properties of the plasma sprayed coating were characterized. The friction and wear behavior of the NiCr/Cr3C2-NiCr/hBN coating from ambient temperature up to 800 °C was evaluated on a ball-on-disk wear tester and compared with that of NiCr/Cr3C2 coating and NiCr/Cr3C2-NiCr/BaF2·CaF2 coating. The results show that NiCr cladding can reduce the decarburization of Cr3C2 and oxidation of hBN during the thermal spray. The main wear mechanisms of the NiCr/Cr3C2-NiCr/hBN composite coating are ploughing and adhesive wear. Layered hexagonal BN particle reduce the direct contact and severe adhesion between friction pairs, thus decreasing the friction coefficient. The NiCr/Cr3C2-NiCr/hBN composite coating shows a promising application in the high temperature environment with the request of both wear resistance and friction reduction.  相似文献   

10.
Coatings of a composite material consisting of an Al-12Si matrix reinforced with 20 wt.% B4C particles were produced using Cold Gas Dynamic Spray (CGDS) and Pulsed Gas Dynamic Spray (PGDS) processes onto Al-6061 and SS-316L substrates. Two types of composite feedstock powders (mechanically mixed and cryomilled) were used. The influence of the coating process as well as the nature of the feedstock material on the coating microstructure and mechanical properties was studied. The combination of cryomilling to synthesize the feedstock powder and the spray processes provides a unique opportunity to produce hard and dense composite coatings with good cohesion between the deformed particles and good adhesion to the substrate, no phase degradation, very low compressive stresses and high dry sliding wear resistance. The two spray processes have shown almost similar results regarding microstructure and mechanical properties. No effect of the substrate material, Al-6061 and SS-316L, on the coating microstructure and properties was observed.  相似文献   

11.
In the present study, mechanically alloyed Al-12Si/TiB2/h-BN composite powder was deposited onto an aluminum substrate by atmospheric plasma spraying. The effect of mechanical alloying (MA) and plasma spray parameters on composite powder and coating structure were investigated. It has been observed that the MA process has a significant effect on the composite powder morphology and reactivity between the selective powders. Results also demonstrate that, at relatively high milling time h-BN decomposes into B and N and forms a solid solution. Also, it has been found that, the relative amount of the in-situ formed AlN through the reaction between h-BN and Al and/or the decomposition of Al-B-N solid solution is independent from the plasma parameters (arc current and secondary gas flow rate). However, spray parameters remarkably affects the coating hardness due to coarsening of Si during the solidification of the coating.  相似文献   

12.
The solution precursor plasma spray (SPPS) process is capable of depositing highly durable thermal barrier coatings (TBCs). In this study, an aqueous chemical precursor feedstock was injected into the plasma jet to deposit SrZrO3 thermal barrier coating on metal substrate. Taguchi design of experiments was employed to optimize the SPPS process. The thermal characteristics and phase evolution of the SrZrO3 precursor, as well as the influence of various spray parameters on the coating deposition rate, microhardness, microstructure, and phase stability, were investigated. The experimental results showed that, at given spray distance, feedstock flow rate, and atomization pressure, the optimized spray parameters were arc current of 600 A, argon flow rate of 40 L/min, and hydrogen flow rate of 10 L/min. The SrZrO3 coating prepared using the optimized spray parameters had single-pass thickness of 6.0 μm, porosity of ~18%, and microhardness of 6.8 ± 0.1 GPa. Phase stability studies indicated that the as-sprayed SrZrO3 coating had good phase stability in the temperature range from room temperature to 1400 °C, gradually exhibiting a phase transition from t′-ZrO2 to m-ZrO2 in the SrZrO3 coating at 1450 °C with increasing time, while the SrZrO3 phase did not change.  相似文献   

13.
The formation of a TiN-Ti composite coating by thermal spraying of titanium powder with laser processing of the subsequent coating in a low-pressure N2 atmosphere was examined. A low-pressure plasma spray system was used in combination with a CO2 laser. First, the coating was plasma sprayed onto a mild steel substrate using a N2 plasma jet and titanium powder in a controlled low-pressure N2 atmosphere. The coating was then irradiated with a CO2 laser beam in a N2 atmosphere, and the coating was heated with a N2 plasma jet. The amount of TiN formed in the coating was characterized by X-ray diffraction analysis. The influence of plasma spraying conditions such as plasma power, flow of plasma operating gases, chamber pressure, and laser irradiating conditions on the formation of TiN was investigated. The effect of TiN formation in the titanium coating on Vickers hardness of the coatings was examined. It was evident that coating hardness increased with an increase in TiN content in the coating and that a TiN-Ti composite coating with a hardness of more than 1200 H V can be obtained with the use of laser irradiation processing.  相似文献   

14.
探究了使用大气等离子喷涂设备制备适合热喷涂使用的球形CaF2/BaF2共晶粉末的可能性。68%BaF2、32%CaF2粉末(质量分数)经过1 100℃真空烧结后,形成致密的块状氟化物共晶。机械破碎后的氟化物共晶经过等离子焰流重熔后得到了球形的氟化物共晶。使用F14-1流动性和松装密度测定仪测量球化前后粉末的流动性和松装密度。采用扫描电子显微镜,XRD表征球化前后粉末的形貌和物相组成。结果表明:球化后的粉末呈现较好的球形,球化后粉末的流动性和松装密度较球化前也有较大的改善:球化后共晶粉末的流动时间为55.20s/50g,松装密度为1.89g/cm3;另外,球化后共晶粉末还表现出良好的高温润滑性能:含有10%CaF2/BaF2共晶(质量分数)的镍基涂层在600℃和800℃的平均摩擦因数都小于0.3。  相似文献   

15.
Reactive plasma spray is the key to fabricating aluminum nitride (AlN) thermally sprayed coatings. It was possible to fabricate AlN/Al composite coatings using atmospheric plasma spray process through plasma nitriding of Al powders (Al 30 ??m). The nitriding reaction and the AlN content could be improved by controlling the spray distance and the feedstock powder particle size. Increasing the spray distance and/or using smaller particle size of Al powders improved the in-flight nitriding reaction. However, it was difficult to fabricate thick and dense AlN coatings with an increase in the spray distance and/or when using fine particles. Thus, the coatings thickness was suppressed because of the complete nitriding of some particles (formation of AlN particles) during flight, which prevents the particle deposition. Furthermore, the excessive vaporization of Al fine particles (due to increased particle temperature) decreased the deposition efficiency. To fabricate thick AlN coatings in the reactive plasma spray process, improving the nitriding reaction of the large Al particles at short spray distance is required to decrease the vaporization of Al particles during flight. This study investigated the influence of adding ammonium chloride (NH4Cl) powders on the nitriding process of large Al powders and on the microstructure of the fabricated coatings. It was possible to fabricate thick AlN coatings at 100 mm spray distance with small addition of NH4Cl powders to the Al feedstock powders (30 ??m). Addition of NH4Cl to the starting Al powders promoted the formation of AlN through changing the reaction path to vapor-phase nitridation chlorination-nitridation sequences as confirmed by the thermodynamic analysis of possible intermediate reactions. This changes the nitriding reaction to a mild way, so it is more controlled with no explosive mode and with relatively low heating rates. Thus, NH4Cl acts as a catalyst, nitrogen source, and diluent agent. Furthermore, the evolved gases from the sublimation or decomposition of NH4Cl can prevent the Al particles coalescing after melting.  相似文献   

16.
Dense composite Y2O3-MgO coatings have been deposited by suspension plasma spray. Ethanol-based suspensions of powders synthesized by thermal decomposition of precursor solutions containing yttrium nitrate (Y[n]) and magnesium nitrate (Mg[n]) or magnesium acetate (Mg[a]) were selected as the feedstock; this gave powders with both phases in each particle, to inhibit phase segregation during solvent evaporation. The influence of powder characteristics on the microstructures of the coatings was investigated. The Y[n]Mg[a] suspension was more stable, with a better dispersion of the component phases than the Y[n]Mg[n] suspension. The coatings deposited using each suspension type exhibited lamellar structures comprising Y2O3 and MgO phases in wavy alternating streaks, with unmelted/semi-melted particles entrapped in the lamellae; this indicates that phase segregation still occurred in the molten state. Eutectic structures were formed in the coating generated using the Y[n]Mg[a] suspension, resulting from improved mixing of the component phases in the suspension powder.  相似文献   

17.
Preparation of TiAl3-Al composite coating by cold spraying   总被引:1,自引:0,他引:1  
TiAl3-Al coating was deposited on orthorhombic Ti2AlNb alloy substrate by cold spraying with the mixture of pure Al and Ti as the feedstock powder at a fixed molar ratio of 3:1 when the spraying distance, gas temperature and gas pressure for the process were 10 mm, 250 °C and 1.8 MPa, respectively. The as-sprayed coating was then subjected to heat treatment at 630 °C in argon atmosphere for 5 h at a heating rate of 3 °C/min and an argon gas flow rate of 40 mL/min. The obtained TiAl3-Al composite coating is about 212 μm with a density of 3.16 g/cm3 and a porosity of 14.69% in general. The microhardness and bonding strength for the composite coating are HV525 and 27.12 MPa.  相似文献   

18.
Aluminum nitride is a promising material for structural and functional applications. Cubic AlN (c-AlN) is expected to have higher thermal conductivity due to their high symmetry; however, its fabrication is difficult. In this study, c-AlN was synthesized by atmospheric plasma spray process through the reaction between Al feedstock powder and nitrogen plasma. Al powders were supplied to the plasma stream by Ar carrier gas and reacted with surrounding N2 plasma, then deposit onto substrate. The obtained coatings were c-AlN/Al mixture at 150 mm of spray distance, and the nitride content was improved by increasing the spray distance. The coatings almost consist of c-AlN at 300 mm of spray distance. The coatings thickness decreased from 100 to 10 μm with increasing spray distance from 150 to 300 mm. Using carrier gas, N2 enable to fabricate thick c-AlN coating with hardness 1020 Hv.  相似文献   

19.
Nanostructured WC-Co coatings were synthesized using high velocity oxygen fuel (HVOF) thermal spray. The nanocrystalline feedstock powder with a nominal composition of WC-18 wt.%Co was prepared using the novel integrated mechanical and thermal activation (IMTA) process. The effects of HVOF thermal spray conditions and powder characteristics on the microstructure and mechanical properties of the as-sprayed WC-Co coatings were studied. It was found that the ratio of oxygen-to-hydrogen flow rate (ROHFR) and the starting powder microstructures had strong effects on decarburization of the nano-coatings. Decarburization was significantly suppressed at low ROHFR and with the presence of free carbon in the powder. The level of porosity in the coatings was correlated with the powder microstructure and spray process conditions. The coating sprayed at ROHFR=0.5 exhibited the highest microhardness value (HV300g=1077), which is comparable to that of conventional coarse-grained coatings.  相似文献   

20.
Antibacterial Property of Cold Sprayed Chitosan-Cu/Al Coating   总被引:1,自引:0,他引:1  
The antibacterial behavior of CS-Cu (chitosan-copper complex) powder and their composite coatings were investigated against Escherichia coli (DH5α). CS-Cu powder and Al (aluminum) based CS-Cu composite powders were synthesized using in-house powder processing techniques. The results indicated that the antibacterial effect of all the powders increased with the proportion of CS-Cu powder. These composite powders were subsequently used as feedstock to generate antibacterial coatings via cold spray technology. The ratios of CS-Cu to Al in their composite powders were 25:75, 50:50, and 75:25 (wt.%). Microstructural characterization and phase analysis of feedstock powders and as-deposited coatings were carried out using FESEM/EDX and FTIR. Antibacterial composite CS-Cu/Al coatings were successfully deposited using cold spraying parameters of 6-8 bars at preheated helium gas, temperature between 140 and 150 °C. The coatings retained the antibacterial properties of the original feedstock powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号