首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to develop a process enabling the quick inactivation of the polyphenol oxidase and pectin methylesterase enzymes, which are present in cloudy or unclarified apple juice; These enzymes are respectively responsible for enzymatic browning and opalescence instability. In order to fulfill this objective, acidification of the apple juice to pH 2.0 was conducted by electrodialysis (bipolar–anionic membranes) followed by mild heat treatment at temperature of 40, 45 and 50 °C for a duration of 0–60 min. Then, juice pH was readjusted to its initial value by electrodialysis with bipolar–anionic membranes. It was shown that a mild heat treatment at 45 °C for 5 min performed on the acidified juice represents an appropriate condition to quickly inactivate the enzymes. Furthermore, the organoleptic properties of the juice after treatment were found to be preserved and the adjusted juice (pH readjusted to its initial value) shows a better color than an untreated apple juice. Opalescence of the adjusted juice was also more stable than for an untreated cloudy apple juice, when stored at 4 °C for 3 months.  相似文献   

2.
The feasibility of vacuum impregnation in combination with air drying + radiant energy vacuum (REV) drying to produce shelf stable probiotic enriched apple slices was evaluated. The shelf life of the products was monitored at 25 and 4 °C. The results demonstrated that bacterial stability at 25 °C depended on the dehydration techniques; with the longest shelf life in air drying +REV drying followed by freeze drying and air drying. Storage at 4 °C showed no significant changes in bacterial population up to 180 days in all samples. Sensory properties of the air drying +REV and freeze dried apple slices remained above the acceptable level for 30 days at 25 °C and 180 days at 4 °C. The results also revealed that dried apple slices were able to provide prominent protection to the cells in acidic gastric juice.  相似文献   

3.
The changes of lifestyle and eating habits of consumers have induced a growth in the demand for functional food. The aim of this work was to study the incorporation of folic acid into apple slices by using ohmic heating (OH) and vacuum impregnation (VI) at 30, 40 and 50 °C and air drying at 50, 60 and 70 °C to obtain an apple snack that is rich in folic acid. The kinetic impregnation of folic acid, texture and color were evaluated. The impregnated samples (VI) at 40 °C and vacuum-impregnated samples with ohmic heating (VI/OH) at 50 °C presented a high content of folic acid, whereas the samples air dried at 60 °C presented an important retention of folic acid. The lowest loss of firmness and color was obtained with the VI/OH treatment at 50 °C with drying at 60 °C. Therefore, the VI/OH treatment at 50 °C followed by drying at 60 °C was determined to be the best process for creating dehydrated apple slices that are rich in folic acid.Industrial relevanceThe aim of this research was to study the incorporation of folic acid into dehydrated sliced apples by using vacuum impregnation/ohmic heating (VI/OH) treatments and air drying technologies and evaluating the mechanical and optical properties of the resulting product. Two technologies, vacuum impregnation (VI) and ohmic heating (OH) were performed at 30, 40 or 50 °C with an electric field intensity of 13 V/cm using conventional heating. The results showed that the samples impregnated of apple slices by VI and VI/OH treatments reached the highest content of folic acid. However, the samples that were dried at 60 °C after impregnation by the VI/OH treatment at 50 °C exhibited an increase in folic acid due to the electropermeabilization effect, which induces retention of folic acid and an increase in the folic acid concentration by decreasing the water content. Under the investigated conditions, the VI/OH treatment at 50 °C followed by air drying at 60 °C may be considered the best processing method to obtain an apple snack that is rich in folic acid.  相似文献   

4.
Ultraviolet (UV) is able to inactivate most microorganisms in fruit juices with a low absorption coefficient but its effect is limited in inactivating undesired enzymes. The aim of this study was to overcome limitation of ultraviolet light (UV) by combining mild heat with UV. Pineapple juice was treated with mild heat (temperature: 50, 55 and 60 °C; holding time: 10, 20 and 30 min) and subsequently exposed to UV (5.61, 7.55 and 11.23 mJ·cm 2). The effects of these combined treatments on pectin methylesterase (PME), bromelain activities and total phenolic content (TPC) were determined. Both enzymatic activities were reduced by mild heat but not by UV treatment. Increasing holding time and UV dosage led to higher depletion of TPC. Treating pineapple juice with mild heat at 55 °C for 10 min and UV at 5.61 mJ·cm 2 decreased PME by 60.53% whilst retaining 61.57 ± 0.21% and 72.80 ± 0.33% of bromelain and TPC, respectively.Industrial relevanceAs opposed to traditional heat pasteurisation, ultraviolet (UV) treatment has the potential to produce pineapple juice with added value, such as high amount of health benefiting phenols and bromelain. Despite being known for being economically feasible, this technology is not widely adapted by the industry due to its inability to inactivate pectin methylesterase (PME). To overcome the limitation of UV, mild heat (MH) is introduced as hurdle technology. This study demonstrates that combining UV and MH could be able to effectively inactivate the PME in pineapple juice whilst preserving relatively high amount of bromelain and phenols.  相似文献   

5.
Cubes of Granny Smith and Pink Lady apples were vacuum packed in barrier bags with 0% to 50% (v/v) pineapple juice (PJ) at 20°Bx and subjected to high pressure processing (HPP) at 600 MPa for 1–5 min (22 °C). The in-pack total colour change (ΔE) was observed over 4 weeks at 4 °C. Within <1 week of storage at 4 °C, texture, polyphenoloxidase, pectinmethylesterase activities, changes in ΔE and visual browning after opening the bags during air exposure (22 °C; 21% O2 ) for 5 h were also monitored. During the 4 weeks storage in bag visible colour changes were not observed. Texture and ΔE after 5 h air exposure were significantly affected by the apple variety, HPP time and % PJ used. The combined treatment significantly reduced residual PPO activity while PME activity was not affected in both varieties. Pineapple juice in combination with HPP could be used as a natural preservation system for minimally processed apples.Industrial relevanceBrowning upon opening the packs and during air exposure can adversely affect the quality of fresh-cut fruits. Combined treatment of high pressure processing (HPP) and use of pineapple juice has the potential to prevent browning for several hours giving sufficient time for presentation and use in domestic and foodservice environment where high quality fresh-like fruit is required.  相似文献   

6.
The UV–C resistance of yeasts (Saccharomyces cerevisiae, Saccharomyces bayanus, Zygosaccharomyces bailii, Dekkera anomala and Dekkera bruxellensis) commonly involved in juice spoilage was investigated. Saccharomyces spp. showed the greatest UV resistance and yeast inactivation decreased with absorptivity of the medium. To improve the UV lethal effect on yeasts in juice, UV treatment was combined with heat (UV–H) (45–60 °C). The inactivation of S. cerevisiae by UV–H treatments between 52.5 and 57.5 °C was greater than use of both technologies individually, suggesting a synergistic effect. Modeling of inactivation data found that a combination of UV–C light with mild temperatures (50–60 °C) produced a 5-log10 reduction of S. cerevisiae in clarified apple juice with lower UV doses (up to a 89.3% of reduction at 57.5 °C) and treatment times (up to 63% of reduction at 52.5 °C) than those needed for UV treatments or heat alone.Industrial relevanceThis investigation demonstrated the lethal efficacy of the combination of UV–C radiation and heat to improve the inactivation of spoilage yeasts in juice. Combined UV–H treatments synergistically increased yeast inactivation, with this approach being less effective than for bacteria. In any case, UV–H at mild temperatures would be an alternative to heat pasteurization treatments, enabling the inactivation of pathogenic bacteria and reducing the concentration of spoilage microorganisms like yeasts, obtaining a safe and stable product at lower temperatures.  相似文献   

7.
Pulsed light (PL) and Thermosonication (TS) were applied alone or in combination using a continuous system to study their effect on Escherichia coli inactivation in apple juice. Selected quality attributes (pH, °Brix, colour (L, a, b, ΔE), non-enzymatic browning (NEBI) and antioxidant activity (TEAC)) were also evaluated pre- and post-processing. Two PL (360 μs, 3 Hz) treatments were selected and the juice exposed to energy dosages of 4.03 J/cm2 (‘low’ (L)) and 5.1 J/cm2 (‘high’ (H)) corresponding to 51.5 and 65.4 J/mL, respectively. The juice was also processed by TS (24 kHz, 100 μm) at 40 °C for 2.9 min (L) or 50 °C for 5 min (H), corresponding to 1456 and 2531 J/ml energy inputs, respectively. The effect of the resulting four energy levels and sequence (PL + TS and TS + PL) was studied. When the technologies were applied individually the maximum reduction achieved was 2.7 and 4.9 log CFU/mL (for TS (H) and PL (H) respectively), while most of the combined treatments achieved reductions in the vicinity of 6 log CFU/mL, showing an additive effect for both technologies when acting in combination, regardless of the sequence applied. All treatments significantly changed the colour of apple juice and the sequence in which the technologies were applied affected colour significantly (P < 0.05). The energy level applied did not affect any of the measured quality attributes.  相似文献   

8.
The work described here deals with the effectiveness of using high-pressure carbon dioxide treatment (HPCD) to stabilise freshly squeezed blood orange juice. Technical planning of a continuous high-pressure supercritical carbon dioxide pilot system, suitable for development on an industrial scale, was carried out in our lab. To determine the optimal operating conditions (temperature, pressure, and CO2/juice ratio), three different experimental trials were carried out. The first trial was conducted at 230 bar, 36 ± 1 °C, 5.08 L/h juice flow rate, and 3.91 L/h CO2 flow rate, corresponding to a gCO2/gjuice ratio of 0.770. The second trial utilised the same conditions except that the operative pressure was reduced (130 bar). The third trial was carried out at 130 bar, 36 ± 1 °C, 5.08 L/h juice flow rate, 1.96 L/h CO2 flow rate, corresponding to a 0.385 gCO2/gjuice ratio. The effects of processing were evaluated by determining physicochemical, antioxidant, and microbiological parameters of the treated juices. In addition, once the best operative parameters had been determined, physicochemical, antioxidant, microbiological and sensory evaluation of fresh blood orange juice stabilised by HPCD treatment was carried out during refrigerated storage of juices at 4 ± 1 °C for thirty days. The results showed that HPCD treatment cannot be considered as an alternative to traditional thermal methods but as a new mild technology for producing a stabilised blood orange juice with a shelf-life of 20 days.Industrial relevanceBlood oranges are the main cultivated varieties of Citrus sinensis (L.) Osbeck in Italy. Freshly squeezed blood orange juice exert a high antiradical and antioxidant activity, due to its rich phenolic profile, but its preservation is usually assured by thermal treatment which affects its nutritional and sensory value. In this study we proposed a “milder” continuous HPCD process suitable for implementation on an industrial scale. The HPCD stabilised juice retains its physicochemical, antioxidant, and sensory properties and could be placed within a new retail framework, namely, that of fresh juices with a shelf-life of 20 days.  相似文献   

9.
The effect of dynamic high pressure homogenization (DHP) alone or in combination with pre-warming on pectin methylesterase (PME) activity and opalescence stability of orange juice was studied. DHP without heating reduced PME activity by 20%. Warming the juice (50 °C, 10 min) prior to homogenization significantly increased the effectiveness of DHP. PME inactivation was further increased by adjusting the pH downward prior to treatment. Accelerated shelf-life study at 30 °C revealed that opalescence stability can be increased by several days by DHP treatment, even in the presence of active PME. These results suggest that the opalescence stability of orange juice treated by DHP does not depend entirely on PME activity but also on particle size reduction and structural changes to pectin resulting from the treatment. The freshness attributes of orange juice treated by warming was improved by DHP treatment.  相似文献   

10.
The effect of high pressure carbon dioxide (HPCD) on the quality of carrot juice was investigated. The L-value of HPCD-treated juices increased significantly (P < 0.05) as compared to untreated juices, and the a-value exhibited an increase tendency with increasing the treatment time. However, the b-value of HPCD-treated juices did not change. The browning degree (BD) and pH of HPCD-treated juices decreased, the cloud and titratable acidity (TA) increased significantly, the UV–visible spectra of juices were lower, but the total soluble solid (TSS) and the carotenoids of juices were stable. The particle size of juices treated by HPCD for 15, 30 and 45 min increased significantly (P < 0.05), for 60 min showed a noticeable decrease and was almost close to untreated juice. HPCD treatment could not alter the Newtonian flow behavior of the carrot juice, but caused a significant increase in juice viscosity (P < 0.05).Industrial relevanceCarrot juice is one of the most popular vegetable juices, but it requires severe heat treatment for protection from spoilage due to a higher pH, its heat-sensitive quality is inevitably destructed. In this study, HPCD can avoid the drawbacks of the heat treatment as a novel non-thermal pasteurization, available data are provided for the application and evaluation of HPCD in the juice industry.  相似文献   

11.
Concentrating cashew apple juice alters the beverage aroma and flavor, compromising consumer acceptability of the concentrated beverage. To understand the mechanisms involved in these changes, this research characterized the dynamics of the loss and emergence of volatile compounds during cashew apple juice concentration, reporting their impact on beverage sensory quality. Fresh cashew apple juice (10.3°Brix) was concentrated in a thermal-siphon type evaporator operating in a closed system. Five samples were taken throughout the concentration process with the following soluble solids contents: 11.8°Brix, 14.9°Brix, 20.2°Brix, 29.6°Brix and 42.1°Brix. Trained judges rated the aroma note intensities, described as “fresh cashew apple” and “cooked” as perceived in the fresh and concentrated beverages. The headspace volatiles of the six samples were identified and quantified by GC–MS. The results indicated the esters as the major component in the fresh juice (226.46 μg kg 1) representing 45.0% of the total mass of volatiles, followed by the terpenes (118.98 μg kg 1), acids (45.23 μg kg 1), aldehydes (39.10 μg kg 1), alcohols (18.91 μg kg 1), lactones (19.15 μg kg 1), hydrocarbons (18.02 μg kg 1) and ketones (11.05 μg kg 1). Predictive statistical models (R2 > 0.956, p  0.002) revealed that on reaching 14.9°Brix, the ester concentration declined more than 90%, the terpene content almost 100%, alcohols 85%, aldehydes 80% and hydrocarbons 90%. At 14.9°Brix, the intensity of “fresh cashew apple” aroma still predominated in the juice, but the panelists detected the presence of a weak “cooked” aroma. Concentration of the beverage to 20.2°Brix or above expressively increased the cooked aroma intensity and the concentration of hydrocarbons, alcohols and some aldehydes usually associated with off-flavors such as pentanal and decanal. This raises the possibility that some of these compounds might have been formed during juice processing. Juice with better sensory quality could possibly be obtained by concentrating the beverage to levels below 20.2°Brix, recovering the esters that evaporated off the juice until ~ 15°Brix is reached, and re-adding them to the juice concentrated.  相似文献   

12.
Fermentation can contribute to improve functional aspects of foods. The first goal of this study was to determine amongst apple, grape and orange juices, the one with the best bacterial growth performance during fermentation by Lactobacillus strains from commercial and artisanal food origins, at 40 °C for 48 h. The juice with the highest bacterial growth was evaluated for bacteria viability during 4 weeks of cold storage, superoxide dismutase (SOD) activity and folates production analyzed through HPLC/fluorimetry. Acceptability of fermented juice was appraised through hedonic analysis. Lactobacilli counts were the highest in apple and the lowest in orange juices at t = 48 h. In most cases, bacteria counts were higher in fermented (5.5 to 9.5 log CFU/ml) than in supplemented apple juices (4.2 to 5.7 log CFU/ml), at the 4th week of cold storage. SOD activity was significantly increased in all apple juices fermented by commercial Lactobacilli strains. Folates were produced in apple juices fermented by Lactobacillus plantarum and Lactobacillus rhamnosus. Apple juice was the best substrate for Lactobacillus growth and, considering bacterial viability and overall acceptance by the panelists, Lactobacillus acidophilus L10 was the most suitable strain for apple juice fermentation.  相似文献   

13.
《LWT》2003,36(3):323-329
Effect of edible coatings in combination with antibrowning agents on minimally processed apple slices was studied during storage at 3°C for 2 week. To control initial respiration rate of apple slices, edible coatings were applied to cut apples as semipermeable barriers against air. Initial respiration rate showed a decrease by 5% and 20% in carrageenan (0.5 g/100 mL)-coated and whey protein concentrate (5 g/100 mL)-coated apples, respectively, at 25°C. Edible coatings in combination with antibrowning agents effectively prolonged the shelf-life of minimally processed apple slices by 2 week when stored in packed trays at 3°C. Addition of various antibrowning agents to these coating solutions was advantageous in maintaining color during storage. Addition of CaCl2 (1 g/100 mL) significantly inhibited the loss of firmness. These edible coatings in combination with antibrowning agents also showed positive sensory analysis results and beneficial reduction of microbial levels. WPC (5 g/100 mL) containing ascorbic acid (1 g/100 mL) plus CaCl2 (1 g/100 mL) was the most effective preservation treatment in terms of sensory quality after 2 week.  相似文献   

14.
The impact of apple pretreatment by pulsed electric field (PEF) on juice extraction using the freezing-assisted pressing was studied. Apple discs were PEF pretreated at electric field strength of E = 800 V/cm and then air blast frozen inside the freezer (− 40 °C). Then, pressing experiments in a laboratory-pressing chamber (2–5 bars) were started at sub-zero temperature (− 5 °C). Time evolution of juice yield and its nutritional qualities were compared for PEF and untreated apple samples. High improvements of juice yield were obtained for freeze-thawed (FT) and PEF + FT samples. The combination of PEF + pressing (5 bar) at sub-zero temperature gave optimum results for juice extraction with high levels of carbohydrates, and antioxidant bioactive compounds. At fixed value of extraction yield, Y, PEF pretreatment improved nutritional parameters. E.g., at Y = 0.6, an increase in °Brix (by ≈ 1.27), carbohydrates (by ≈ 1.42), total phenolic compounds (by ≈ 1.16), flavonoids (by ≈ 1.09) and antioxidant capacity (by ≈ 1.29) was observed after PEF pretreatment.Industrial relevancePressing constitutes one of the most commonly used technologies at industrial scale to obtain fruit juices. However, during the pressing some undesirable chemical, physical and biological changes may occur in juices, thus reducing their nutritional and sensorial properties. For instance, the use of freezing-assisted pressing is a promising technique for the production of juice concentrates rich in sugars and other solids as the low temperature operation prevents undesirable modifications. But this method is rather expensive and requires strong control of the quality of “ice” juices, their sensory and compositional profiles. Thus, there is an increased search for obtaining new efficient methodologies for producing high quality juices. In this line, PEF-assisted pressing has been shown as a useful technology to increase juice yield. Therefore, the combination of PEF-assisted “ice” juice extraction by pressing of fruits at subzero temperatures may be a useful tool to improve the extraction yield of juices, thus improving their nutritional, physicochemical and sensorial properties.Keywords: “Ice” juice, Apple, Pulsed electric fields, Freezing-assisted pressing  相似文献   

15.
Polygalacturonase (PG) and pectinmethylesterase (PME) were extracted and purified from four tomato varieties (Galeón, Malpica, Perfectpeel and Soto) used in the processing industry. The processing stability (thermal and high pressure) of PG and PME from the four varieties was analyzed, and they all showed the same behavior. PG was present in two isoforms, PG1 (inactivated at 90 °C, 5 min) and PG2 (inactivated at 65 °C, 5 min). In contrast, PG1s and PG2s showed the same pressure stability, both can be inactivated at room temperature in the pressure range of 300–500 MPa. On the other hand, purified PMEs could be thermally inactivated (5 min, 70 °C) but 50% of its activity remained after high-pressure treatment (850 MPa, 15 min, 25 °C). High pressure processing can thus be used for selective inactivation of PG in tomato processing (while keeping PME intact). This fact could open prospectives for improving texture/rheology of processed tomato based products; however further research in the texture/rheology area is needed.  相似文献   

16.
Inactivation of pectinmethylesterase (PME) and polygalacturonase (PG) is required to minimize quality loss in tomato products. Tomato juice was subjected to thermosonication (TS) (24 kHz), at amplitudes of 25, 50 and 75 μm at 60, 65 and 70 °C or heat only treatments. The TS treatment at 60 °C, 65 °C and 70 °C for 41.8, 11.7 and 4.3 min exposure, respectively reduced PME activity by 90%. The heat only treatment at 60 °C, 65 °C and 70 °C for 90.1, 23.5 and 3.5 min, respectively inactivated PME by 90%. TS treatments with 25–75 μm amplitude had no significant impact on the inactivation efficiency between 60 and 70 °C. After TS the average particle size decreased noticeably (< 30 μm) and viscosity increased 2–4 fold, compared to the heat treated or untreated juice (180 μm). These results suggest that TS at 60 and 65 °C could be useful to obtain tomato juice with a low residual PME activity and high viscosity.Industrial relevanceThe processed tomato industry is constantly in search for potential alternative processes to conventional “cold break” and “hot break” treatments that could inactivate the pectic enzymes of importance. The findings of this study would help the industry to inactivate pectinmethylesterase (PME) enzyme at a lower temperature range and also achieve a higher viscosity due to the mechanical effects of thermosonication. Low temperature treatment would enable the retention of fresh-like properties of tomato juice. Based on the findings of this study, thermosonication could be considered as a potential alternative to conventional “cold break” and “hot break” treatments of tomato juice.  相似文献   

17.
Ultraviolet (UV-C) irradiation is a non-thermal disinfection method, effective against a range of bacteria and viruses, which is being considered as an alternative to pasteurization of fruit juices. The objective of this study was to investigate the effect of UV-C irradiation on the polyphenolic content and in-vitro total antioxidant activity of apple juice. UV irradiation doses ranging from 0 to 240 mJ·cm 2 were delivered to apple juice and polyphenols, sugars, in-vitro total antioxidant activity and total phenols were profiled. The results demonstrated that UV-C irradiation in apple juices at relevant commercial disinfection doses induced significant reduction in the concentrations of chlorogenic acid, phloridzin, and epicatechin (p < 0.05). The induced changes were relatively minor for the above mentioned polyphenols, except phloridzin (50% reduction) at 240 mJ·cm 2. Epicatechin concentrations were reduced significantly (p < 0.05), whereas increase in catechin concentration was observed with increase in UV-C exposure to 240 mJ·cm 2. There was a minor reduction in sugar (glucose and fructose) concentrations with increasing exposure levels from 0 to 40 mJ·cm 2 (p > 0.05). In contrast, a slight increase in sugar concentrations as increase in UV-C exposure after 40 mJ·cm 2 was observed. These changes were not significantly different from control. Total phenolic content was well retained regardless of the UV-C exposure for apple juice. In-vitro total antioxidant activity changed when UV-C exposure exceeded 40 mJ·cm 2, but remained unchanged at the maximum UV-C dose of 240 mJ·cm 2. These results suggested that UV-C irradiation could be an effective alternative to conventional thermal processing for production of high quality apple juice.Industrial RelevanceThis research paper provides scientific evidence of the potential for UV-C irradiation to achieve meaningful levels of disinfection while retaining important bioactive compounds (polyphenols) in apple juice. In-vitro antioxidant activity and individual polyphenols were well retained at commercially relevant doses of 40 mJ·cm 2. From a nutritional perspective, UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier food products. Therefore, UV-C irradiated foods could be sold at a premium price to their thermally-processed counterparts, as they have retained their fresh-like properties. This study would provide technical information relevant for commercialization of UV-C treatment of juices.  相似文献   

18.
The influence of apple mash treatment with pulsed electric fields (PEF) on yield and quality attributes of the resulting cloudy juices were investigated. Apple juice was produced at laboratory scale (400 g apples per lot) by mash treatment with pulsed electric fields at three different field intensities (1, 3, 5 kV/cm, n = 30 pulses) and manual pressing at room temperature. The juices were compared with untreated control juices of the same mash and with a juice after pectolytic mash treatment. Relative to the control samples, juice yield increased with increasing field intensities. The overall composition as described by pH, total soluble solids, total acidity, density, contents of sugar, malic acid and pectin, respectively, as well as the nutritive value with respect to polyphenol contents and antioxidant capacities (TEAC, FRAP, DPPH) of the PEF-treated apple juices did not significantly differ from the controls.Industrial relevanceThis paper addresses the composition of apple juice after mash treatment applying pulsed electric fields and maceration enzymes, respectively. Since substantial equivalence of products derived from novel technologies, such as PEF, relative to their conventionally produced counterparts is required according to European food law, this aspect is of great relevance, especially for commercialisation of fruit juices based on PEF technology. Furthermore, the nutritional value of juices produced at different pulsed electric field activities is of relevance for their marketing.  相似文献   

19.
Detailed comparison of various properties (concentration of soluble solids, purity, nature of impurities, coloration and filterability) of sugar beet juices obtained by pulsed electric field (PEF) assisted “cold” extraction (T = 30 and 50 °C) and classical “hot” extraction (T = 70 °C) was done. It was shown that application of PEF-assisted “cold” extraction results in lower concentration of colloidal impurities (especially, pectins), lower coloration and better filterability of juice. Concentration of various colorants and their intermediates decreased significantly with decreasing of the extraction temperature from 70 °C to 30 °C. Filtrate obtained by dynamic filtration of juice extracted with PEF treatment had a high purity (95.3 ± 0.4%) and low coloration (1.2×103 IU). Obtained data suggest that PEF-assisted “cold” extraction is a promising method for preparation of sugar beet juices with high purity.  相似文献   

20.
《LWT》2005,38(3):227-238
The purpose of this project was to design a continuous flow microwave pasteurization system and to evaluate the following process parameters: volume load size (0.5 and 1.38 l), input power (900–2000 W), and inlet temperature (3°C, 21°C, and 40°C). Water and two apple ciders, one from a cold press and the other from a hot press extraction, were the fluids used to study the heating characteristics. Volumetric flow rate and absorbed power were criteria in the evaluation. The microwave pasteurization system consisted of helical coils throughout a large cavity oven, which was shown to produce uniform and reproducible heating throughout the cavity. Fluid viscosity of water and cider was measured at temperatures between 20°C and 70°C to characterize the flow in helical coils based on the Dean number. Process lethality was verified based on inoculation of Escherichia coli 25922 in apple cider, in which the pasteurization process resulted in a 5-log10 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号