首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为了优化22MnB5超高强度钢的热成形工艺并提高其综合性能,开展了淬火温度对22MnB5超高强度钢组织及性能的影响研究。分别对22MnB5超高强度钢加热至830、860、890、920、950℃温度后水淬,采用金相显微镜分析其组织状态,并通过拉伸试验、撕裂试验评价其强度及断裂韧性,采用扫描电子显微镜对断口形貌进行分析研究。结果表明,当淬火温度低于920℃时,随着温度升高,组织马氏体含量升高,材料强度不断上升,塑性较为优异。综合考量,在920℃下保温淬火,能够使22MnB5获得最佳的使用性能。  相似文献   

2.
利用光学显微镜(OM),研究了淬火工艺及Nb元素对30MnB5钢的原奥氏体晶粒度的影响。结果表明:含Nb的30MnB5钢在淬火温度860~920 ℃,保温时间不超过60 min时,原奥氏体晶粒度具有良好的稳定性;当淬火温度达到950 ℃时,保温时间超过30 min后,原奥氏体晶粒尺寸随着保温时间增长逐渐变大;因此,淬火温度低于950 ℃时,Nb元素对30MnB5钢热处理过程中原奥氏体晶粒生长具有抑制作用;当淬火温度达到1000 ℃时,Nb元素仅在30 min以内对原奥氏体晶粒生长有轻微抑制作用,当淬火保温时间超过60 min时,Nb元素完全失去对原奥氏体晶粒生长的抑制作用。  相似文献   

3.
利用光学显微镜、拉伸试验机、扫描电镜、XRD和EBSD等手段对22MnB5钢的微观组织及力学性能进行了表征,并重点分析了一步法Q&P工艺处理后的22MnB5钢中残留奥氏体含量及残留奥氏体中碳含量与力学性能的关系。结果表明:采用一步法Q&P工艺,可以获得抗拉强度超过1400 MPa,伸长率超过15%的超高强度22MnB5钢板。随着淬火温度从240 ℃升高至300 ℃,22MnB5钢的组织由马氏体转变为马氏体+残留奥氏体复相组织,试样中的残留奥氏体含量逐渐增加。相同配分温度延长配分时间,残留奥氏体含量呈现先增加后降低趋势。不同热处理工艺下残留奥氏体中的平均碳含量为1.49wt%。采用一步法Q&P热处理工艺可以使残留奥氏体中富集碳,提高残留奥氏体稳定性,强塑积可以达到22.14 GPa·%。  相似文献   

4.
采用Gleeble-3800热模拟试验机对22MnB5热成形钢连铸坯在600~1300℃温度范围内的高温力学性能进行了测试,借助扫描电镜观察了高温拉伸后的断口形貌。系统分析了形变温度对应力-应变曲线、高温强度及热塑性的影响。结果表明,22MnB5热成形钢连铸坯的高温拉伸过程是形变强化和动态软化共同作用的结果,高温强度随形变温度的升高而下降。22MnB5热成形钢连铸坯的第1脆性区在1250℃至熔点范围内,为S和P元素在枝晶间偏析导致晶界熔融所致。第3脆性区在650~750℃范围内,为奥氏体晶界BN析出和奥氏体→铁素体相变所致,加入Ti可使第3脆性区变窄且趋向较低温度区。在800~1200℃温度范围内22MnB5热成形钢连铸坯塑性良好,可为此类钢的连铸工艺制定提供参考,以减少铸坯裂纹缺陷的产生。  相似文献   

5.
为满足新一代汽车对轻量化、节能和抗冲撞安全的需求,开发了一种新型先进热成形处理(AHFT)技术,以制造强塑积达15~30 GPa·%的超高强塑性汽车构件。基于先进高强度钢AHSS塑性化热处理技术和残余奥氏体相变诱导塑性TRIP效应,在传统热冲压成形后随即控制淬火冷却速率和温度,并进行贝氏体等温淬火处理(AT)或淬火-碳分配-回火处理(Q-P-T),使热成形淬火构件获得超高强度(抗拉强度不小于1.0 GPa)铁素体-残余奥氏体型的F-TRIP钢、贝氏体-残余奥氏体型的B-TRIP钢、马氏体-残余奥氏体型的M-TRIP(或Q-P)钢,可以显著提高热成形超高强度构件的伸长率和强塑性。这种先进热成形处理AHFT技术,可以采用22MnB5、TRIP钢、Q-P钢和Q-P-T钢为基础的化学成分,通过传统热连轧宽带钢机组或者短流程CSP薄板坯连铸连轧机组,生产热轧超薄(1.2~2.0 mm厚)酸洗板作为原料。先进热成形处理AHFT技术与短流程CSP相结合,生产超高强塑性汽车构件,是高效、节能、环保的短流程深加工技术,可以显著缩短汽车构件的整体制造流程,降低生产成本,大幅度减少汽车构件制造过程中和汽车使用过程中的CO2排放,并拓宽热成形构件产品的种类及其强度和塑性级别范围。  相似文献   

6.
采用扫描电镜、电子背散射衍射技术、室温拉伸试验等研究了1800 MPa级热成形钢经930 ℃保温4 min保压淬火后在200 ℃回火不同时间(10~30 min)对其组织和力学性能的影响。结果表明,随着回火时间的延长,试验钢的抗拉强度变化较小,其屈服强度和断后伸长率均呈先增后减的趋势。经20 min回火后,马氏体亚晶粒尺寸最小;回火10 min后,组织中的小角度晶界最多。200 ℃回火10 min后由于试验钢的残余应力释放、马氏体亚晶粒尺寸减小和小角度晶界增多,综合影响下热成形钢的综合力学性能最佳,其抗拉强度为1844 MPa,断后伸长率从淬火态的8.27%提升到11.78%,强塑积达21 GPa·%以上,说明短时回火有利于该超高强度钢的综合性能提高及其热成形件的可靠应用。  相似文献   

7.
对22Mn B5热成形钢进行淬火和回火处理,利用扫描电镜、透射电镜、电子背散射衍射技术、室温拉伸检测等方法研究回火温度对22Mn B5热成形钢显微组织和力学性能的影响。结果表明:随着回火温度(100~500℃)的升高,22Mn B5热成形钢的抗拉强度逐渐降低,温度超过200℃后显著降低,屈服强度先略为降低(100℃)再略为升高(200℃)最后显著降低(超过200℃),总伸长率逐渐提高,板条马氏体发生回复和再结晶,板条间的小角度晶界减少,板条边界逐渐模糊,马氏体板条粗化明显;经200℃保温10 min回火后,大部分板条马氏体略有粗化,屈服强度较100℃保温10 min先降低后略为提高至1292 MPa,伸长率为6.2%,出现硬化效应,热成形钢的综合力学性能得到明显改善。  相似文献   

8.
采用室温拉伸、SEM、EBSD、TEM等分析检测技术,对在760~950℃热处理的轻质中锰钢的显微组织和力学性能进行了研究。结果表明:经过不同温度热处理后,试验钢的显微组织均由铁素体和奥氏体两相组成。830℃保温10 min后水淬的试验钢可获得最佳力学性能,其抗拉强度为863 MPa,断后伸长率为47%,强塑积达到40 929 MPa·%。当热处理温度降低至760℃时,钢中奥氏体含量减少,使得奥氏体中固溶碳含量增加,导致试验钢抗拉强度增加,断后伸长率降低,且无机械孪晶形成;当温度升高至910~950℃时,奥氏体晶粒粗化,奥氏体体积分数增加,其抗拉强度和断后伸长率相应降低。试验钢在拉伸变形过程中,其强化机制以孪晶诱发塑性和微带诱发塑性为主。  相似文献   

9.
利用材料万能试验机、金相显微镜和透射电镜研究了热成形钢WHT1300HF在850、900和950℃分别保温5 min,以及在900℃分别保温2、10和15 min奥氏体化处理并模拟热冲压淬火后的组织和性能变化规律。结果表明,随着奥氏体化温度从850℃升高到950℃,试验钢的屈服强度先下降后有所升高,抗拉强度和伸长率均呈明显的下降趋势,显微硬度则迅速升高;而试验钢的强度、伸长率和显微硬度均随奥氏体化时间的延长呈明显的下降趋势。另外,在850℃和900℃保温2 min奥氏体化处理,试验钢的微观组织中均存在铁素体,而在900℃及以上的温度或在900℃保温5 min及更长时间奥氏体化处理后均为全马氏体组织;奥氏体晶粒大小随加热温度的升高和保温时间的延长逐渐增大,但加热温度对奥氏体晶粒的长大作用更显著。  相似文献   

10.
随着汽车工业对轻量化和安全性要求的提高,热成形高强钢在汽车领域的应用越来越广泛。针对22MnB5钢在热成形过程中表面易氧化和脱碳的问题,通过热浸镀Al-Si镀层提高热成形钢的抗高温性能。结果表明:当浸镀温度为700℃、浸镀时间为5 s时,22MnB5钢表面Al-Si镀层厚度约为40μm,其中Al-Si镀层截面组织由铝基固溶体、Fe-Al-Si三元合金和Fe-Al二元合金相三层组成。相比于原始钢板,热浸镀Al-Si镀层的22MnB5钢的抗高温氧化能力大幅改善,在900℃保温时其氧化增重速率约为0.11g/(m2·min)。  相似文献   

11.
以经酸连轧后的34MnB5钢为原料,采用Gleeble3500热模拟试验机模拟退火试验,分析最佳退火温度,并进行不同热冲压工艺的平模淬火试验。研究退火温度、淬火温度对热成形钢组织与性能的影响。结果表明,退火温度为790℃时,条带状组织已基本消失,晶粒的等轴化程度较高,混晶现象明显改善,贝氏体晶粒组织细化,在基体内部均匀分布铁贝两相。退火温度为790℃,淬火温度为930℃,保温5 min时,显微组织为细小均匀的板条马氏体,综合力学性能最好,其屈服强度达到1353 MPa,抗拉强度达到2018 MPa,伸长率达到7.5%,且横纵向三点弯曲角均可以达到50°以上。  相似文献   

12.
杨康  史娜  丁敬  于良  方强 《金属热处理》2022,47(10):191-197
基于亚稳奥氏体形变诱导相变理论,在实验室采用盐浴炉对800 MPa级冷轧双相钢DP780的I&Q&P(临界退火与淬火配分)工艺进行了探讨,并采用光学显微镜、扫描电镜、拉伸试验机与XRD对不同工艺下试验钢的组织性能进行了研究。结果表明,在I&Q&P工艺试验条件下,试验钢的显微组织由铁素体、马氏体与残留奥氏体组成;830 ℃退火时铁素体晶粒尺寸以>5 μm为主,860 ℃退火下其晶粒尺寸以<5 μm为主。830 ℃退火时试验钢的力学性能随淬火温度的变化波动较大,860 ℃退火时试验钢的力学性能随淬火温度的变化波动较小。860 ℃退火+260 ℃淬火时,试验钢的综合力学性能最佳,其抗拉强度、伸长率与强塑积分别为802 MPa、26.8%与21.5 GPa·%,钢中残留奥氏体含量高达13.89%。  相似文献   

13.
耿志宇  张宇  薛晗  薛峰  周天鹏 《金属热处理》2022,47(11):192-198
通过热力学计算软件Thermo-Calc计算了2000 MPa热成形钢的平衡相图、各相的析出温度、相中的元素含量、碳化物在不同温度下的长大规律以及不同Nb、V含量对其碳化物析出温度和析出量的影响规律。选定特定成分,利用50 kg真空炉进行了熔炼,并进行热轧和冷轧,利用平板模具淬火的方式模拟热成形工艺并进行了力学性能检测和三点弯曲性能检测。利用场发射扫描电镜和EBSD对组织进行了表征。结果表明,Nb、V微合金化2000 MPa热成形钢中的碳化物主要有NbC和VC,析出温度分别在1150 ℃以上及880 ℃以上,且其析出温度分别随着Nb和V含量的升高而升高。平板模具淬火后热成形钢板的抗拉强度超过2000 MPa,伸长率超过8%,拉伸断口为韧性断口,且三点弯曲角度超过66°。SEM和EBSD的结果表明,马氏体组织由马氏体束(packet)、马氏体块(block)和马氏体板条(lath)组成,原奥氏体晶粒约为10 μm,且马氏体块的尺寸<5 μm,马氏体块内部由马氏体板条组成,马氏体板条间为不连续的小角度晶界,晶界的取向差大部分小于5°。细小的原奥氏体晶粒和马氏体块组织是微合金化2000 MPa热成形钢具有高强度、高塑韧性的主要原因。  相似文献   

14.
对5%Mn冷轧中锰钢进行930 ℃×20 min淬火后再进行660、665、675、685 ℃保温30 min的逆相变退火处理,并用光学显微镜、扫描电镜、X射线衍射仪等研究退火温度对中锰钢组织和力学性能的影响。结果表明:5%Mn冷轧中锰钢经过高温淬火和逆相变退火后的组织为超细晶铁素体、板条马氏体和奥氏体。随着逆相变退火温度由660 ℃增加至685 ℃,奥氏体含量先增加后降低并在665 ℃逆相变退火后达到最大值,抗拉强度持续增加,屈服强度先升高后降低并在675 ℃退火时达到最大,伸长率先升高后降低并在665 ℃时达到最大值。综合来看,5%Mn中锰钢冷轧板经过930 ℃×20 min淬火和665 ℃×30 min逆相变退火后的综合力学性能最佳,此时奥氏体体积分数为24.24%,抗拉强度为980 MPa,伸长率为23.68%,强塑积达到了23.21GPa·%。  相似文献   

15.
利用冷弯试验机、光学显微镜、扫描电镜等研究手段,分析了热冲压成形工艺过程中的加热保温时间对1800 MPa级热成形钢微观组织和冷弯性能的影响。结果表明,随保温时间的增加,试验钢热冲压成形后的原始奥氏体晶粒长大,当保温时间为5 min时,原始奥氏体晶粒尺寸约为5 μm,细小且均匀,当保温时间达到9 min时,出现异常粗大晶粒。冷弯角与原始奥氏体晶粒尺寸关系密切,冷弯角随着晶粒的长大而减小,在5 min时获得最大冷弯角54.5°。  相似文献   

16.
对含硅的低碳中锰钢进行Q&P处理,获得了回火马氏体、新生马氏体和残留奥氏体的混合组织,利用SEM、TEM、XRD和拉伸试验机等检测手段研究不同热处理工艺下微观组织结构及力学性能。结果表明,随着淬火温度的提高,试验钢的抗拉强度先降低后升高,屈服强度则一直降低,总伸长率先升高后降低。淬火温度为250 ℃时,试验钢的综合力学性能最好,抗拉强度为1331 MPa,断后伸长率为17.3%,强塑积可达23 GPa·%。这主要是由于组织中一定比例的膜状残留奥氏体发挥TRIP效应,拉伸变形阶段表现出持续的加工硬化能力,获得更好的强塑匹配。淬火温度为270 ℃时,由于残留奥氏体的稳定性降低,组织内存在大量新生马氏体,使塑性下降。  相似文献   

17.
研究了不同温度“零保温”淬火工艺下,40Cr钢的显微组织与性能的变化规律。结果表明,在850~910 ℃下“零保温”淬火和550 ℃回火后,40Cr钢的硬度、抗拉强度和冲击吸收能量随温度的升高先增加后降低。890 ℃“零保温”淬火和550 ℃回火时,钢的硬度、抗拉强度和冲击吸收能量达到最高值,这些性能均优于同温度下保温淬火时试验钢的性能。40Cr钢“零保温”淬火性能的提高与其淬火后得到的细小板条状马氏体组织、奥氏体晶粒的细化和奥氏体中碳浓度分布不均匀有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号