首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
借助全自动淬火膨胀仪测定钢的Ac1、Ac3相变点,通过对试验钢进行淬火+亚温淬火+回火热处理和淬火+回火热处理,研究了两种热处理工艺下30MnCrNiMo高强钢的组织与性能。结果表明:30MnCrNiMo高强钢的Ac1、Ac3相变点分别为653、807 ℃。采用淬火+亚温淬火+回火的热处理工艺所获得的马氏体和铁素体复相组织比直接淬火+回火得到的全马氏体组织更为细小、均匀,试验钢的屈服强度为1499 MPa,伸长率为14.0%,室温、-40 ℃冲击吸收能量分别为35.5和29.5 J,钢的塑性和冲击性能显著提升,有效改善了30MnCrNiMo高强钢的强韧性能。  相似文献   

2.
采用力学性能测试和光学显微镜观察研究亚温淬火工艺对厚度为25 mm的控轧控冷(TMCP)态EH47船板钢组织与性能的影响。结果表明:热处理后TMCP态船板钢的综合性能有较大提高。最佳的亚温淬火工艺为850℃淬火/30 min+500℃回火/30 min,其显微组织为铁素体+回火索氏体。  相似文献   

3.
研究了亚温淬火工艺和原始组织对一种新型射孔枪管用钢组织和性能的影响。结果表明,随亚温淬火温度升高,试验钢的晶粒增大,硬度呈先增大后降低的趋势;随回火温度升高,钢的硬度和强度逐渐降低,断面收缩率和冲击吸收能量逐渐增大;经分析最佳热处理工艺为840 ℃亚温淬火+560 ℃回火,以此工艺下处理后调质态试验钢的综合力学性能最优。  相似文献   

4.
采用SEM、EBSD和XRD等分析手段研究了退火温度对含Ce新能源无取向电工钢组织及织构的影响。结果表明:800 ℃退火后,试验钢边部和中心部位均能观察到再结晶组织及亚晶组织,α线织构中的{112}<110>取向密度最高,γ线织构中的{111}<112>取向密度较弱,退火板存在少量η织构;830~920 ℃退火后,温度越高,再结晶越充分,α线织构取向密度下降,γ线织构取向密度增加,η织构基本消失;试验钢在950 ℃退火后发生了完全再结晶,平均晶粒尺寸为48.29 μm,γ线织构中的{111}<112>取向密度最高,为11.36。  相似文献   

5.
介绍了亚温淬火对亚共析钢20Cr钢组织和性能的影响和其强韧化的机理,以及用正火或者退火代替完全淬火的可行性研究,最后找出20Cr钢最佳亚温淬火热处理工艺。结果表明,20Cr钢在820℃亚温淬火+200℃回火的热处理工艺下,其强度和韧性配合好;当铁素体形貌为针状弥散分布时,材料冲击韧度普遍较好;而正火或者退火代替完全淬火对20Cr钢亚温淬火后冲击韧度不利,不能得到弥散分布的针状铁素体。本文对与20Cr钢性能类似的钢种亚温淬火热处理工艺的制定具有一定指导作用。  相似文献   

6.
赵喜伟  龙杰  庞辉勇  吕建会 《轧钢》2022,39(3):103-107
采用常规化学成分、轧制和调质热处理工艺生产的超高强EH690钢板屈强比在0.96以上,为了实现钢板较低的屈强比,一般采用低碳、高合金的化学成分设计,然后再进行两次淬火(常温淬火Q+两相区淬火Q')+回火的工艺,生产工艺复杂,生产成本较高。为此,采用低合金化学成分设计,合理的控轧控冷工艺及亚温淬火+回火的热处理工艺,研究了不同亚温淬火温度、回火温度对EH690钢板力学性能和显微组织的影响。结果表明:所设计化学成分的EH690钢板经过815 ℃的亚温淬火+480 ℃回火热处理后,钢板具有合适比例的软相铁素体和硬相马氏体双相组织,这种组织在保证钢板具有较好力学性能的同时屈强比也降低到0.90左右。采用该工艺,简化了生产工艺流程,降低了生产成本,实现了低屈强比超高强EH690钢板的工业化大规模生产。  相似文献   

7.
通过光学显微镜观察试验钢的显微组织,利用万能试验机、摆锤冲击试验机和布氏硬度计分别检测试验钢的强度、塑性、冲击性能和硬度,研究了热处理工艺对60CrNiMo轧辊钢组织性能的影响。结果表明,400℃等温淬火时得到的贝氏体和珠光体的混合组织其强度和塑韧性较差;相比较于马氏体等温淬火+高温回火工艺,采用两相区亚温淬火,形成的铁素体和回火马氏体双相组织,可有效改善试验钢的力学性能,并且可以避免淬火裂纹的产生;试验钢经马氏体等温淬火+亚温淬火+高温回火热处理后其布氏硬度为318 HBW,规定塑性延伸强度(R_(p0.2))为797 MPa,抗拉强度为981 MPa,伸长率15%,断面收缩率为46%,室温冲击吸收能量达到66 J,各项性能指标均优于国家标准JB/T 6401—2017中的要求。  相似文献   

8.
采用XRD研究了Ni47Ti44Nb9锻造板坯织构、不同热轧、冷轧方向板材织构。研究表明,锻造板坯有典型的γ取向线织构,锻板心部最强取向在{111}<112>。沿轧向(RD)、交叉方向(CD)、横向(TD)热轧板织构类型相似,主要有3条取向线织构,接近{114}、{223}、{332}(或{221}),{332}面织构取向密度最强,最强织构分别为{221}<110>、{332}<113>、{332}<023>,不出现γ-织构。沿与轧向成0o、45o、90o方向二次冷轧最强织构近似为{332}<110>。90o方向二次冷轧织构强度最高,有多个强织构组分,γ-织构得到显著加强  相似文献   

9.
利用光学显微镜、扫描电镜、热膨胀分析仪等对连铸-轧制方式生产的60 mm厚09MnNiDR容器钢板经不同亚温淬火+回火工艺处理后的组织和低温冲击性能进行了分析.结果表明:相比两次亚温淬火+回火工艺,采用淬火+亚温淬火+回火工艺的试验钢1/2厚度处冲击吸收能量大大提高,这与组织中小尺寸晶粒的占比提高有关;前者冲击断口形貌...  相似文献   

10.
利用"亚温"淬火新工艺对65Mn钢在不同条件下进行试验,对试样进行显微组织、强度及硬度的测试,研究了亚温淬火工艺对65Mn钢组织及性能的影响.结果表明,采用830℃淬火+790℃二次淬火+450℃回火的热处理工艺时,65Mn钢的强度、硬度最高,力学性能最好;生产上采用亚温淬火取得了很好的经济效益.  相似文献   

11.
利用光学显微镜及SEM进行组织观察,通过拉伸和低温冲击试验研究了热处理对两种不同碳含量3.5Ni钢的力学性能和低温韧性的影响。两种3.5Ni钢热轧板分别经860 ℃×1 h空冷的正火处理和860 ℃×1 h水淬+(580, 610, 640)×1 h回火的调质处理。结果表明:含碳量较高的3.5Ni钢热轧态强度低塑性高,但-100 ℃冲击吸收能量低,经正火处理后试验钢的整体性能降低,而调质处理后强度和低温冲击吸收能量均明显提升,塑性略有降低;含碳量较低的3.5Ni钢热轧态已经具有优异的拉伸性能和低温冲击性能,经热处理后拉伸性能和低温韧性没有得到明显提升。  相似文献   

12.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响.结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物.当5Cr5Mo2V钢在920~1030℃淬火时,随淬火温度升高硬度值增加并于1030℃达到最大值62.53 HRC,之后硬度...  相似文献   

13.
采用正交试验方法研究了3379BA1汽轮机叶片钢热处理工艺与力学性能之间的关系。结果表明:影响试验钢力学性能的因素先后顺序为回火温度、淬火温度、回火时间、淬火时间,得出了最优热处理工艺参数为1050 ℃淬火(保温60 min,油冷)后在700 ℃回火(保温120 min,空冷)。通过试验验证,经最优热处理工艺处理后试验钢可以满足各项性能要求,较工艺优化前冲击吸收能量平均值提升约10 J,屈强比达87.3%。  相似文献   

14.
利用热膨胀相变仪测定了新型热作模具钢4Cr3Mo2Si1V的奥氏体连续冷却转变(CCT)曲线,研究了其在不同淬火、回火工艺下的力学性能和显微组织。结果表明:4Cr3Mo2Si1V钢的珠光体与贝氏体的临界冷速分别为0.03 ℃·s-1和0.8 ℃·s-1。经淬火试验,发现该钢种在1030 ℃和1060 ℃油淬后具有较高的硬度,且晶粒未发生明显长大。随着回火温度的提高,其硬度呈现先增后降的趋势,在500 ℃回火时由于第二相粒子大量析出,析出强化作用增强,促使二次硬化现象产生,硬度达到峰值,约57 HRC。经过多组工艺对比后,发现1030 ℃淬火和600 ℃回火后的平均冲击吸收能量达到最大值,为265 J,且硬度值仍保持在52 HRC,故最终选定1030 ℃×30 min油淬+600 ℃×2 h回火两次作为4Cr3Mo2Si1V钢的最佳热处理工艺。  相似文献   

15.
采用激光共聚焦扫描显微镜对07MnCrMoR水电钢奥氏体晶粒长大的动态过程进行了原位观察,并对其静态CCT曲线进行了测定,利用淬火机和热处理炉对38 mm厚的试验钢进行了淬火和回火试验。结果表明:试验钢在1200℃以下加热时奥氏体晶粒长大趋势不明显;当冷却速率为0.05~0.25℃/s时,试验钢的组织转变为多边形铁素体+珠光体,冷却速率为0.5~20℃/s时转变为贝氏体组织,冷却速率为20~50℃/s时转变为马氏体组织;930℃淬火后,试验钢的组织转变为板条贝氏体+马氏体,600℃回火后转变为铁素体+回火贝氏体,大量的碳化物在铁素体基体上析出,其屈服强度为602 MPa,抗拉强度为713 MPa,-20℃低温冲击吸收能量为259 J,力学性能高于国家标准的要求,为最佳的调质生产工艺。  相似文献   

16.
采用二次加热淬火和低温回火工艺改善?120 mm锻造耐磨钢球的使用性能,研究了二次加热淬火工艺中不同升温速率和淬火冷却时间对钢球硬度分布、冲击性能和显微组织的影响.得出钢球的最佳热处理工艺为:以2.8℃/min的速率升温至840℃并保温1 h,出炉空冷至800℃后淬入35℃水中冷却350~400 s,然后出水空冷至80...  相似文献   

17.
采用埋弧自动焊(SAW)对大口径厚壁G115钢管进行焊接,焊后经785℃回火后发现焊缝冲击吸收能量低于标准要求的最低值。通过对焊接方法、焊材及回火温度的分析和试验表明,焊缝的回火温度超出了熔覆金属的Ac1点,产生不完全相变组织,且碳化物回溶、沉淀强化作用减少、马氏体亚结构和位错密度降低、析出相长大粗化等多种因素的交互作用最终造成了焊缝冲击性能的下降。采用1080℃×3 h正火+770℃×6.5 h回火的热处理修复后,焊缝的冲击性能得到大幅度的提升。  相似文献   

18.
采用OM、SEM、EDS、相分析、硬度测试和冲击性能试验等分析手段,对比研究Nb含量为0、0.067%和0.270%(质量分数)的H13试验钢淬回火后的组织及力学性能。结果表明,加入Nb后试验钢淬火硬度有所下降;淬火温度提高后,含Nb试验钢的晶粒尺寸小于0Nb试验钢,但含Nb试验钢中存在部分未溶碳化物;3种试验钢回火后的二次硬化峰均出现在510 ℃。经1050 ℃淬火、不同温度回火后,0.067Nb试验钢的冲击吸收能量高于0Nb试验钢。0.27Nb试验钢受到大尺寸碳化物的影响,淬火温度在1080 ℃以下时,冲击吸收能量不及另两种试验钢。  相似文献   

19.
采用液-固复合的方法制备铸态复合耐磨试验钢,且分别进行等温淬火和淬火-回火处理,利用扫描电镜、硬度计及冲击性能测试研究了不同的热处理对高铬高碳钢/碳钢复合铸造耐磨钢组织和性能的影响。利用JMatPro软件对试验钢不同温度下平衡相种类与含量进行了计算。结果表明,铸态高铬高碳钢/碳钢复合材料耐磨层的微观组织由网状碳化物和粒状珠光体组成;基体层为由粗大的奥氏体在较快冷速下形成的魏氏组织。等温淬火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+奥氏体+铁素体的微观组织,基体层形成了块状铁素体与珠光体的微观组织;淬火-回火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+马氏体的微观组织,基体层形成马氏体+上贝氏体的微观组织。经过等温淬火的试验钢耐磨层硬度为493 HBW,冲击吸收能量为2.6 J,基体层冲击吸收能量为79.2 J;经过淬火-回火的耐磨层硬度为629 HBW,冲击吸收能量为1.6 J,基体层的冲击吸收能量为20.0 J。考虑复合耐磨钢需要抵抗较高冲击载荷,880 ℃保温2 h空冷至320 ℃保温5.5 h的等温淬火为更优的热处理工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号