首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金属纳米材料具有优于相应块体材料的优良特性,由于合成方法所限,很难实现宏观量级尺度金属纳米材料的定向生长。固态离子学法能够有效控制纳米材料的形貌、长度、排列有序度和粗糙度,制备宏观尺寸的纳米材料。该文详细介绍了固态离子学法的制备机理;分别综述了单一金属纳米材料的制备过程及电场强度、电流和快离子导体薄膜的种类对材料的形貌和排列有序度的影响,并介绍了不同合金纳米材料和复合纳米材料的制备工艺,通过对比单一金属纳米材料、合金及复合纳米材料分别作为表面增强拉曼散射基底时的极限浓度,总结了影响检测灵敏度的因素;最后总结了该领域面临的问题,并对该方法未来的发展趋势进行展望。  相似文献   

2.
Lithium solid electrolytes are of major interest for solid-state batteries and electrochemical capacitors (ECs). Currently, the material selection space of liquid electrolytes is dominated by lithium salts paired with organics. Improved safety, as well as the need for higher temperature and high voltage operation, opens up opportunities for glass and ceramic alternatives in these important solid-state energy storage technologies. Lithium thiophosphates in the family x Li2S + (1−x) P2S5 (mol fraction) possess room temperature ionic conductivities greater than 10−3(Ω-cm)-1 in crystallized x = 0.70 (almost the highest in inorganic solid-state electrolytes). Within this review article, we address recent progress made in this class of material. We consider the role of densification on the Li-ion conductivity, as well as our recent data on the effect of densification on the electrochemical properties of the system. We cover the processing techniques of mechanical milling and pressure-forming, discuss microstructure, bulk versus surface conduction, and device integration. The systematic improvement in ionic conductivity with increased density suggests that bulk conduction dominates surface conduction and demonstrates that dense, rather than porous, lithium thiophosphate solid electrolytes are important in the design of solid-state batteries and ECs.  相似文献   

3.
In this paper, high-entropy (MgCoNiCuZn)1-xLixO oxides (x = 0, 0.1, 0.15, 0.2, and 0.3) were synthesized via reactive flash sintering (RFS), and the effect of RFS process on the microstructure and electrical property of the materials were studied. The Li-doped materials exhibited a mixed ionic–electronic transport behavior. The oxidation of Co2+ into Co3+ upon Li incorporation into the materials synthesized via the conventional solid-state reaction route was not evidenced in the flash sintered materials. Instead, the charge unbalance in the Li-doped materials synthesized via RFS was compensated by oxygen vacancies and holes in the valence band of the oxides, which were accounted for the ionic conduction and electronic conduction, respectively. The ionic conductivity increased upon increasing the Li concentration as more oxygen vacancies were formed. The attraction between defects with different charges (LiM/ and VO••), which formed defect complexes, led to a decrease in the mobility of the defects, thus resulting in a less pronounced increase in the ionic conductivity at high Li concentrations. The change in the charge compensation mechanism of the materials indicates that the microstructure of such kind of oxides could be altered through RFS, and thus the property may be manipulated.  相似文献   

4.
Hybrid materials, which combine properties of organic–inorganic materials, are of profound interest owing to their unexpected synergistically derived properties and are considered as innovative advanced materials promising new applications in many fields such as optics, electronics, ionics and mechanics. Inorganic fillers are added to polymers in order to increase some of the properties of the compounds. These hybrid polymeric materials are replacing the pristine polymers due to their higher strength and stiffness. In the present work, studies concerning the preparation of poly (methylmethacrylate) [PMMA] and the nanocomposites PMMA/SiO2, PMMA/TiO2 are reported. These nanocomposite polymers were synthesized by means of free radical polymerization of methylmethacrylate, further “sol–gel” transformation‐based hydrolysis and condensation of corresponding alkoxide was used to prepare the inorganic phase during the polymerization process of MMA. Electrolytes were synthesized based on these nanocomposite polymers and have shown superior properties as compared to conventional polymer electrolytes. The nanocomposites and the nanocomposite polymer electrolytes (NPEs) with different lithium salts were investigated through an array of techniques including FTIR and calorimetry along with the electrochemical and rheological techniques. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
One of the most exciting recent developments concerning molecular architectures is the emerging field of crystalline chalcogenide superlattices that bridges two traditional but distinct areas of research: chalcogenide clusters and porous materials. By combining synthetic and structural concepts in these two areas, many crystalline solids containing spatially organized chalcogenide clusters have been created that exhibit varied properties ranging from microporosity, fast ion conductivity, and photoluminescence to narrow and tunable electronic band gaps. The potential applications of these materials extend beyond traditional areas such as acid catalysis or adsorption-based separation to include shape- or size-selective photocatalysis, solid-state ionics, and electrochemistry.  相似文献   

6.
Ceramic Fuel Cells   总被引:22,自引:0,他引:22  
A ceramic fuel cell in an all solid-state energy conversion device that produces electricity by electrochemically combining fuel and oxidant gases across an ionic conducting oxide. Current ceramic fuel cells use an oxygen-ion conductor or a proton conductor as the electrolyte and operate at high temperatures (>600°C). Ceramic fuel cells, commonly referred to as solid-oxide fuel cells (SOFCs), are presently under development for a variety of power generation applications. This paper reviews the science and technology of ceramic fuel cells and discusses the critical issues posed by the development of this type of fuel cell. The emphasis is given to the discussion of component materials (especially, ZrO2 electrolyte, nickel/ZrO2 cermet anode, LaMnO3 cathode, and LaCrO3 interconnect), gas reactions at the electrodes, stack designs, and processing techniques used in the fabrication of required ceramic structures.  相似文献   

7.
Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.  相似文献   

8.
Application of heat to a tantalum-calcia stabilized zirconia-tungsten cell, in which the tantalum-zirconia interface has been bonded previously, produced emf's in the range 673° to 2273°K. The origin of these potentials was proposed tentatively to be solid-state chemical reactions involving the oxidation of tantalum metal and the reduction of ferric ion present as an impurity oxide in the stabilized zirconia. Thermal gradients in the zirconia produced opposing Seebeck potentials at temperatures higher than 1073°K. Resistivity measurements performed with solid zirconia electrolytes resulted in the hypothesis that electric conduction in these materials was electronic in stabilized zirconia impregnated with tantalum species and ionic in stabilized zirconia which had undergone no tantalum reaction.  相似文献   

9.
Structure and phase transition of LaO1− x F1+2 x , prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x . The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.  相似文献   

10.
以LiNO3、Al(NO3)3·9H2O、La(NO3)3·6H2O、ZrO(NO3)2·5H2O为原料,采用溶胶-凝胶法制备Li5.95Al0.35La3Zr2O12粉体,随后加入聚乙烯醇(PVA)水溶液作为液相介质,通过冷烧结工艺制备Li5.95Al0.35La3Zr2O12石榴石固态电解质。冷烧结工艺后采用后续热处理改善离子传导性能。采用质量体积法和电化学阻抗谱对Li5.95Al0.35La3Zr2O12石榴石固态电解质的体积密度和离子电导率进行了测试,采用XRD与SEM进行晶体结构与形貌表征。结果表明,冷烧结时间和压力对样品的晶体结构几乎没有影响。冷烧结时间过长会导致样品开裂,在15~30 min时,冷烧结时间对样品的致密性和电导率影响不大,在烧结时间较短的样品中发现了杂相。提高冷烧结压力可明显提高样品的致密性和电导率,在200℃、510 MPa、30 min的冷烧结条件下可以获得具有较高离子电导率(2.66×10-6 S/cm)的Li5.95Al0.35La3Zr2O12石榴石固态电解质,此时材料的晶界电阻较小。但继续增加冷烧结压力,由于热处理过程中第二相的分解和晶粒生长受到抑制,样品的致密性和电导率反而下降。  相似文献   

11.
尖晶石型锂离子筛研究进展   总被引:8,自引:0,他引:8  
纪志永  许长春  袁俊生  李鑫钢 《化工进展》2005,24(12):1336-1341
介绍了作为锂离子筛前体的尖晶石型锂锰氧化物的结构与合成方法,指出固相配位反应法和水热合成法极具发展前景。详细论述了锂离子筛的制备、存在的问题、应用及相关研究,指出复合机理的相对合理性。最后提出开发粒(膜)状锂离子筛、进行规模化提锂工艺研究的必要性和重要意义。  相似文献   

12.
Lithium metal oxides with the nominal composition Li5La3M2O12 (M = Nb, Ta), possessing a garnetlike structure, have been investigated with regard to their electrical properties. These compounds form a new class of solid-state lithium ion conductors with a different crystal structure compared with all those known so far. The materials are prepared by solid-state reaction and characterized by powder XRD and ac impedance to determine their lithium ionic conductivity. Both the niobium and tantalum members exhibit the same order of magnitude of bulk conductivity (∼10−6 S/cm at 25°C). The activation energies for ionic conductivity (<300°C) are 0.43 and 0.56 eV for Li5La3Nb2O12 and Li5La3Ta2O12, respectively, which are comparable to those of other solid lithium conductors, such as Lisicon, Li14ZnGe4O16. Among the investigated materials, the tantalum compound Li5La3Ta2O12 is stable against reaction with molten lithium. Further tailoring of the compositions by appropriate chemical substitutions and improved synthesizing methods, especially with regard to minimizing grain-boundary resistance, are important issues in view of the potential use of the new class of compounds as electrolytes in practical lithium ion batteries.  相似文献   

13.
The development of an inorganic electrochemical stable solid-state electrolyte is essentially responsible for future state-of-the-art all-solid-state lithium batteries (ASSLBs). Because of their advantages in safety, working temperature, high energy density, and packaging, ASSLBs can develop an ideal energy storage system for modern electric vehicles (EVs). A solid electrolyte (SE) model must have an economical synthesis approach, exhibit electrochemical and chemical stability, high ionic conductivity, and low interfacial resistance. Owing to its highest conductivity of 17 mS·cm-1, and deformability, the sulfide-based Li7P3S11 solid electrolyte is a promising contender for the high-performance bulk type of ASSLBs. Herein, we present a current glimpse of the progress of synthetic procedures, structural aspects, and ionic conductivity improvement strategies. Structural elucidation and mechanistic approaches have been extensively discussed by using various characterization techniques. The chemical stability of Li7P3S11 could be enhanced via oxide doping, and hard and soft acid/base (HSAB) concepts are also discussed. The issues to be undertaken for designing the ideal solid electrolytes, interfacial challenges, and high energy density have been discoursed. This review aims to provide a bird's eye view of the recent development of Li7P3S11-based solid-state electrolyte applications and explore the strategies for designing new solid electrolytes with a target-oriented approach to enhance the efficiency of high energy density all-solid-state lithium batteries.  相似文献   

14.
Electrodes of solid-state batteries contain a three-phase mixture of active material, auxiliary electrolyte and auxiliary current collector. Models are proposed for the geometric configuration which may be assumed by three different grains. Together with assumptions about the conduction mechanism in the active material, these models lead to 10 limiting cases. It is deduced that ionic conduction in the volume of the active grains is a necessary condition for the completeness of the discharging and recharging process. It is shown that this condition is not influenced by (i) the geometric configuration or (ii) additional ion conduction at grain boundaries or surfaces. Under certain circumstances the electrode must be subjected to a forming process.  相似文献   

15.
This article illustrates how bifunctional catalyst surfaces are created by modifying oxide surfaces with organic functional groups and/or with metal complexes, summarizing our previous reports and also presenting new data, which provide a new class of catalytic materials with a high complexity for selective catalysis including C–C coupling, hydroformylation, and asymmetric reactions. The catalyst surfaces are characterized by in situ physical analysis techniques such as time-resolved XAFS, FT-IR, solid-state MAS NMR and so on.  相似文献   

16.
赵辰孜  袁洪  卢洋  张强 《化工进展》2021,40(9):4986-4997
开发下一代高安全性、高能量密度电池是电动汽车、可穿戴便携电子设备与可再生能源高效利用的关键。固态金属锂电池是极有希望的下一代电池体系。本文首先综述了固态电解质与界面特性,包括固态电解质中的离子传输机理和固态电解质分类,指出金属锂电极与固态电解质之间有限的固-固界面接触是固态金属锂电池实用化的重要挑战,其界面演变特性主导了固态电池的性能表现。界面演变是机械-化学-电化学耦合的过程。其次,文章综述了电池界面失效机制与构筑策略,指出界面失效包括枝晶状沉积引发的电池短路与空穴累积、副反应导致的电化学界面脱触等,使用界面润湿剂、引入界面缓冲层或构造三维多孔骨架结构化电极等是解决界面问题的重要手段。最后,文章总结指出,固态金属锂电池仍有巨大的进步空间,先进的理论研究和表征手段为进一步认识和理解固-固界面提供了新的机遇,通过界面化学、材料科学、系统工程等领域的交叉共融,有望共同推动下一代高安全、高能量密度固态储能技术的发展。  相似文献   

17.
The dielectric properties of two grades of bi‐oriented isotactic polypropylene were studied with a variety of techniques: breakdown field measurements, dielectric spectroscopy, thermally stimulated depolarization currents (Is), and direct‐current (dc) conduction I values. Standard polypropylene (STPP) and high‐crystallinity polypropylene (HCPP) films were investigated. Measurements were carried out over a wide temperature range (?150°C/+125°C). The breakdown fields in both materials showed a very small difference. On the other hand, the dielectric losses and dc conduction I values were significantly lower in HCPP. Both materials showed a decrease in the dielectric loss versus temperature in the range 20–90°C; this is favorable for application in alternating‐current power capacitors. The analysis of the dc I value allowed us to find evidence of two main conduction mechanisms: (1) below 80°C in both materials, a hopping mechanism due to the motion of electrons occurred in the amorphous phase, and (2) above 80°C, ionic conduction occurred in HCPP, and hopping conduction occurred in STPP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42224.  相似文献   

18.
Novel soluble and non-soluble polymers based on methacrylic acid, ethylene glycol diglycidyl ether and pyrazole, triazole or imidazole were obtained by a one-spot synthetic strategy. The new materials were characterized by spectroscopic techniques (FT-IR, and solution- and solid-state NMR). Evidence on the covalent binding of the different heterocycles to the non-soluble matrix was given by the unequivocal assignment of the 13C solid-state NMR spectra. Proton relaxation times in the rotating frame and two-dimensional wideline separation (1H-13C WISE) NMR spectra were used to assess their molecular dynamics. The higher synthetic yield of polyampholytes bearing triazole or pyrazole correlated with a lower molecular motion and a higher cross-linking degree. The polyelectrolyte effect of these materials was exhaustively explored through the acid-base properties, swelling and zeta potential. The quaternization of heterocyclic residues, responsible for adsorptive properties, was studied taking into account that these materials are attractive for analytical, environmental and biotechnological processes.  相似文献   

19.
The rapid development of two new classes of electrically active polymer materials, electronically conducting and electroactive polymers and ion-conducting polymers respectively, offers new possibilities for application of both classes of material, especially in combination with each other. While some of these combinations have been attempted before, they all met serious problems due to poor interpenetration of the two polymers. The recent availability of solubilized and soluble electroactive and conductive polymers has greatly advanced the possibilities of reducing the interpenetration problem. Some experimental studies using the combination of solubilized electroactive polypyrrole with poly(ethylene oxide) in an electroactive polymer blend electrode for solid-state polymer batteries are discussed. The opportunities for using polymer blends for solid-state electrochemical polymeric devices, and avenues for the development of materials for such devices, are also reviewed.  相似文献   

20.
Polymer electrolyte membranes are key components in electrochemical power sources that are receiving ever-growing demand for the development of more efficient, reliable and environmentally friendly energy systems. Ongoing research is focusing on materials with high ionic conductivity and stability, at low cost. Among different methods, radiation-induced grafting is a universal attractive method for preparation of polymer electrolyte materials with tunable properties for various energy conversion and energy storage applications. This review addresses recent advances in the application of radiation-induced grafting techniques for the preparation of polymer electrolyte membranes/separators for emerging electrochemical devices such as fuel cells, batteries and supercapacitors. The challenges associated with the current state-of-the-art materials are highlighted, together with new directions that should be considered for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号