首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The Tec protein-tyrosine kinase family includes Btk, Itk/Tsk/Emt, Tec, Rlk/Txk, and Bmx which are involved in signals mediated by various cytokines or antigen receptors. Itk is expressed primarily in T cells and activated by TCR/CD3, CD28, and CD2. However, the defect in T cell signaling in itk-deficient mice is very modest. Thus, we looked for other Tec family kinases that could be expressed in lymphoid cells and involved in T cell signal transduction. Here, we demonstrate that Tec, expressed in T cells, is activated following TCR/CD3 or CD28 ligation and interacts with CD28 receptor in an activation-dependent manner. This interaction involves the Tec SH3 domain and the proline-rich motifs in CD28. We also show that Tec can phosphorylate p62(dok), one CD28-specific substrate, whereas Itk cannot. Overexpression of Tec but not Itk can enhance the interleukin-2 promoter activity mediated by TCR/CD3 or CD28 stimulation and introduction of a kinase-dead Tec but not Itk can suppress interleukin-2 expression, indicating that Tec is directly involved in T cell activation. Altogether, these data demonstrate that Tec kinase is an integral component of T cell signaling and that the two Tec family kinases, Tec and Itk, have distinct roles in T cell activation.  相似文献   

3.
Protein-tyrosine phosphatases (PTPs) are involved in the regulation of diverse cellular processes and may function as positive effectors as well as negative regulators of intracellular signaling. Recent data demonstrate that malignant transformation of cells is frequently associated with changes in PTP expression or activity. Our analysis of PTP expression in mammary carcinoma cell lines resulted in the molecular cloning of a receptor-like PTP, also known as DEP-1. DEP-1 was found to be expressed at varying levels in mammary carcinoma cell lines and A431 cells. In all tumor cell lines analyzed, DEP-1 was constitutively phosphorylated on tyrosine residues. Phosphorylation of DEP-1 increased significantly after treatment of cells with the PTP inhibitor pervanadate. In A431 cells, tyrosine phosphorylation of DEP-1 was also observed after stimulation with epidermal growth factor, however, only after prolonged exposure of the cells to the ligand, suggesting an indirect mechanism of phosphorylation. In addition, DEP-1 coprecipitated with several tyrosine-phosphorylated proteins from pervanadate-treated cells. In vitro binding experiments using a glutathione S-transferase fusion protein containing the catalytically inactive PTP domain of DEP-1 (Gst-DEP-1-C/S) identify these proteins as potential substrates of DEP-1. In addition, we found a 64-kDa serine/threonine kinase to be constitutively associated with DEP-1 in all tumor cell lines tested. The 64-kDa kinase forms a stable complex with DEP-1 and phosphorylates DEP-1 and DEP-1-interacting proteins in vitro. These data suggest a possible mechanism of DEP-1 regulation in tumor cell lines involving serine/threonine and/or tyrosine phosphorylation.  相似文献   

4.
Previous studies demonstrated that Syk protein-tyrosine kinase (Syk) is activated by thrombin in platelets. To elucidate the function of Syk in platelets, we have biochemically examined the intracellular location of Syk and the molecules associated with Syk, following platelet activation. In human platelets, thrombin induces the relocation of Syk to the cytoskeletal fraction presumably via Syk tyrosine phosphorylation. Relocated Syk is associated with the actin filament network, and the early phase (10-90 s) of this association can be partially inhibited by the pretreatment of platelets with cytochalasin D, an inhibitor of actin polymerization. Upon thrombin stimulation, Syk becomes associated with Fak as demonstrated by co-immunoprecipitation. The association of both kinases can be inhibited by pretreatment of platelets with cytochalasin D. Interestingly, reconstitution experiments, using COS cells transfected with various porcine Syk mutants, revealed that the kinase domain, but not the kinase activity, of Syk is required for the association of Syk with the actin filament network. These findings suggest that thrombin-induced association of Syk with Fak correlates with the state of actin polymerization, and may play an important role in platelet activation.  相似文献   

5.
Although bacterial lipopolysaccharides (LPS) and several other microbial agonists can bind to mCD14 (membrane CD14), a cell-surface receptor found principally on monocytes and neutrophils, host-derived mCD14 ligands are poorly defined. We report here that phosphatidylinositol (PtdIns), phosphatidylinositol-4-phosphate, and other phosphatidylinositides can bind to mCD14. Phosphatidylserine (PS), another anionic glycerophospholipid, binds to mCD14 with lower apparent affinity than does PtdIns. LPS-binding protein, a lipid transfer protein found in serum, facilitates both PS- and PtdIns-mCD14 binding. PtdIns binding to mCD14 can be blocked by anti-CD14 monoclonal antibodies that inhibit LPS-mCD14 binding, and PtdIns can inhibit both LPS-mCD14 binding and LPS-induced responses in monocytes. Serum-equilibrated PtdIns also binds to mCD14-expressing cells, raising the possibility that endogenous PtdIns may modulate cellular responses to LPS and other mCD14 ligands in vivo.  相似文献   

6.
A second-site mutation that restored DNA binding to ADR1 mutants altered at different positions in the two zinc fingers was identified. This mutation (called IS1) was a conservative change of arginine 91 to lysine in a region amino terminal to the two zinc fingers and known from previous experiments to be necessary for DNA binding. IS1 increased binding to the UAS1 sequence two- to sevenfold for various ADR1 mutants and twofold for wild-type ADR1. The change of arginine 91 to glycine decreased binding twofold, suggesting that this arginine is involved in DNA binding in the wild-type protein. The increase in binding by IS1 did not involve protein-protein interactions between the two ADR1 monomers, nor did it require the presence of the sequences flanking UAS1. However, the effect of IS1 was influenced by the sequence of the first finger, suggesting that interactions between the region amino terminal to the fingers and the fingers themselves could exist. A model for the role of the amino-terminal region based on these results and sequence homologies with other DNA-binding motifs is proposed.  相似文献   

7.
Previous studies have indicated that certain members of the cyclin-dependent kinase/mitogen-activated protein kinase superfamily are involved in apoptosis of neuronal cells. Here, we have examined programmed cell death induced by withdrawal of neurotrophic support from CNS (rat retinal) and PNS (chick sympathetic, sensory, and ciliary) neurons. All four neuron types were equally rescued by the purine analogues olomoucine and roscovitine. Olomoucine inhibits multiple cyclin-dependent and mitogen-activated protein kinases with similar potency. Roscovitine is a more selective cyclin-dependent kinase inhibitor; but, so is butyrolactone I, which did not prevent retinal ganglion cell death. The specific p38MAPK inhibitor SB-203580 did not prevent apoptosis in retinal ganglion cells. Death of these cells in the absence of neurotrophic factors was accompanied by morphological changes indicative of apoptosis, including nuclear condensation and fragmentation. Treatment with olomoucine or roscovitine not only prevented these apoptotic changes in retinal ganglion cells but also blocked neurite outgrowth. The survival-promoting activity of olomoucine correlated with its in vitro IC50 for c-Jun N-terminal kinase-1 and its potency to repress c-jun induction in live PC12 cells. Roscovitine was more potent in rescuing neurons than in inhibiting Jun kinase. Thus, the antiapoptotic action of roscovitine might be due to inhibition of additional kinases.  相似文献   

8.
Ceramide has been proposed as a second messenger molecule implicated in a variety of biological processes. It has recently been reported that ceramide activates stress-activated protein kinase (SAPK, also known as c-Jun NH2-terminal kinase JNK), a subfamily member of mitogen-activated protein kinase superfamily molecules and that the ceramide/SAPK/JNK signaling pathway is required for stress-induced apoptosis. However, the molecular mechanism by which ceramide induces SAPK/JNK activation is unknown. Here we show that TAK1, a member of the mitogen-activated protein kinase kinase kinase family, is activated by treatment of cells with agents and stresses that induce an increase in ceramide. Ceramide itself stimulated the kinase activity of TAK1. Expression of a constitutively active form of TAK1 resulted in activation of SAPK/JNK and SEK1/MKK4, a direct activator of SAPK/JNK. Furthermore, expression of a kinase-negative form of TAK1 interfered with the activation of SAPK/JNK induced by ceramide. These results indicate that TAK1 may function as a mediator of ceramide signaling to SAPK/JNK activation.  相似文献   

9.
Sleep consists of two complex states--NREM and REM sleep--and disturbances of the boundaries between the states of sleep and wakefulness may result in violence. We investigated our population for reports of violence associated with sleep. REM behavior disorder is rarely associated with injury to the sufferer or others. NREM sleep related nocturnal wandering associated with self-inflicted injuries has variable etiologies. In the elderly, it is associated with dementia. In young individuals, it may be associated with mesio-temporal or mesio-frontal foci and an indication of a complex partial seizure. It also may be related to abnormal alertness and is associated with excessive daytime sleepiness, micro-sleeps, and hypnagogic hallucinations in sleep disorders such as narcolepsy or sleep disordered breathing.  相似文献   

10.
Phosphotyrosine was found to be 0.5% of the total phosphoamino acids labelled with [32P]orthophosphate in endogenous maize seedlings proteins. Two peaks of protein kinase activity towards phosphorylation of synthetic peptide poly (Glu80, Tyr20) were obtained after chromatography of protein extract of dark-grown etiolated maize seedlings on phosphocellulose. The phosphorylation of synthetic peptide as well as endogenous proteins was strongly stimulated by Mn2+. At least three endogenous proteins with molecular masses in the range of 40-65 kDa were predominantly phosphorylated. This phosphorylation was resistant to alkali treatment. Chemical, immunological and enzymatic data indicated the presence of tyrosine kinase activity and also phosphotyrosine in proteins of maize seedlings. The plant enzyme(s) is reminiscent known mammalian cytosolic tyrosine kinase(s).  相似文献   

11.
brk (breast tumor kinase) shows homology to the src family of non-receptor protein-tyrosine kinases and is expressed in breast carcinomas. In order to investigate the role of brk in breast tumor development, we have examined the growth and transformation properties of human mammary epithelial cells engineered to overexpress Brk. Interestingly, like c-Src, overexpression of Brk leads to sensitization to EGF, and also results in a partially transformed phenotype. Further investigation of the latter activity was attempted by mutational analysis, targeting key residues known to affect tyrosine kinase activity in Src-like kinases. Mutation of amino acid residue Lys-219 to Met, by analogy to Src, abolished both kinase activity and transformation capacity. Mutation of amino acid residue Tyr-447 to Phe, however, resulted in a decrease in transforming potential without affecting kinase activity. These results suggest that while Src and Brk share some functional properties, they act differently during transformation. These differences are discussed in the context of the mechanisms underlying breast cancer development.  相似文献   

12.
13.
Several cell membrane proteins have been identified as herpes simplex virus (HSV) entry mediators (Hve). HveA (formerly HVEM) is a member of the tumor necrosis factor receptor family, whereas the poliovirus receptor-related proteins 1 and 2 (PRR1 and PRR2, renamed HveC and HveB) belong to the immunoglobulin superfamily. Here we show that a truncated form of HveC directly binds to HSV glycoprotein D (gD) in solution and at the surface of virions. This interaction is dependent on the native conformation of gD but independent of its N-linked glycosylation. Complex formation between soluble gD and HveC appears to involve one or two gD molecules for one HveC protein. Since HveA also mediates HSV entry by interacting with gD, we compared both structurally unrelated receptors for their binding to gD. Analyses of several gD variants indicated that structure and accessibility of the N-terminal domain of gD, essential for HveA binding, was not necessary for HveC interaction. Mutations in functional regions II, III, and IV of gD had similar effects on binding to either HveC or HveA. Competition assays with neutralizing anti-gD monoclonal antibodies (MAbs) showed that MAbs from group Ib prevented HveC and HveA binding to virions. However, group Ia MAbs blocked HveC but not HveA binding, and conversely, group VII MAbs blocked HveA but not HveC binding. Thus, we propose that HSV entry can be mediated by two structurally unrelated gD receptors through related but not identical binding with gD.  相似文献   

14.
OBJECTIVE: To develop a method for the detection of bilateral Horner's syndrome in patients with bilateral interruption of the cervical sympathetic pathway or widespread autonomic neuropathy. METHODS: Darkness pupil diameters and redilatation times during light reflexes have been recorded with infrared TV pupillometry in 65 healthy subjects, 47 patients with unilateral Horner's syndrome, and 20 patients with bilateral Horner's syndrome. The aetiologies of the last group were diabetic autonomic neuropathy (three cases), amyloidosis (four), pure autonomic failure (PAF) (four), dopamine-beta-hydroxylase deficiency (two), and one case each of hereditary sensory and autonomic neuropathy (HSAN) type III, carcinomatous sympathetic neuropathy, familial dysautonomia, multiple system atrophy, Anderson-Fabry disease, and anterior spinal artery thrombosis at C5,6 and one had had bilateral cervical sympathectomies. RESULTS: Darkness diameters on the affected side were below normal in 12 patients with unilateral Horner's syndrome, the measurement yielding only 26% sensitivity for detection of the condition. By contrast, the time taken to reach three quarter recovery in the light reflex (T3/4) was abnormally prolonged (redilatation lag) in 33 of the same eyes. The measurement yielded 70% sensitivity and 95% specificity for detection of the condition. In 20 cases, diagnosed on clinical grounds as having bilateral Horner's syndrome of various aetiologies, pupil diameters were abnormally small on both sides in five and on one side in three patients. Fourteen of these patients had significant redilatation lag in both eyes, five patients in one eye, and one patient had it in neither eye. Measurement of redilatation lag was therefore a more sensitive diagnostic test than pupil diameter in both unilateral and bilateral Horner's syndrome. CONCLUSIONS: Provided that the pupils are not tonic, bilateral Horner's syndrome can be diagnosed on the basis of redilatation lag. It occurs clinically in some generalised autonomic neuropathies and with interruption of the local sympathetic nerve supplies to the two eyes.  相似文献   

15.
The kinetic mechanism of the hydrolysis of phosphate monoesters catalyzed by a soluble form of rat protein-tyrosine phosphatase (PTPase), PTP1, was probed with a variety of steady-state and pre-steady-state kinetic techniques. Product inhibition and 18O exchange experiments are consistent with the enzymatic reaction proceeding through two chemical steps, i.e. formation and breakdown of a covalent phosphoenzyme intermediate. The variation of kcat/Km with pH indicates that three ionizable groups are involved in enzyme substrate binding and catalysis. The first group must be deprotonated and is attributed to the second ionization of the substrate. The other two groups with pK alpha values of 5.1 and 5.5 correspond to two enzyme active site residues. The kcat-pH profiles for both p-nitrophenyl phosphate and beta-naphthyl phosphate are bell-shaped and are superimposable, with the apparent pK alpha values derived from the acidic limb and the basic limb of the profile being 4.4 and 6.8, respectively. This suggests that the rate-limiting step corresponds to the decomposition of the phosphoenzyme intermediate at all pH values. Results from leaving group dependence of kcat at two different pH values support the above conclusion. Furthermore, burst kinetics have been demonstrated with PTP1 using p-nitrophenyl phosphate as a substrate. The rate constants for the formation and the breakdown of the intermediate are 241 and 12 s-1, respectively, at pH 6.0 and 3.5 degrees C. A normal D2O solvent isotope effect (kcatH/kcatD = 1.5) is associated with the breakdown of the phosphoenzyme intermediate, indicating a solvent-derived proton in the transition state. The leaving group dependence of kcat/Km suggests that there is a strong electrophilic interaction between the enzyme and the leaving group oxygen in the transition state of the phosphorylation event. These results are compared with those of the Yersinia PTPase and suggest that the mechanism for PTPase-catalyzed phosphate monoester hydrolysis is conserved from bacterial to mammals.  相似文献   

16.
Protein-tyrosine phosphatase (PTP) inhibitors are attractive as potential signal transduction-directed therapeutics which may be useful in the treatment of a variety of diseases. We have previously reported the X-ray structure of 1,1-difluoro-1-(2-naphthalenyl)methyl] phosphonic acid (4) complexed with the human the protein-tyrosine phosphatase 1B (PTP1B) and its use in the design of an analogue which binds with higher affinity within the catalytic site (Burke, T. R., Jr. et al. Biochemistry 1996, 35, 15989). In the current study, new naphthyldifluoromethyl phosphonic acids were designed bearing acidic functionality intended to interact with the PTP1B Arg47, which is situated just outside the catalytic pocket. This residue has been shown previously to provide key interactions with acidic residues of phosphotyrosyl-containing peptide substrates. Consistent with trends predicted by molecular dynamics calculations, the new analogues bound with 7- to 14-fold higher affinity than the parent 4, in principal validating the design rationale.  相似文献   

17.
OBJECTIVE: To examine the association between coronary artery disease and polymorphisms at the angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1R) genes. METHODS: A total of 181 patients younger than 50 years and 240 controls from the same homogeneous Caucasian population (Asturias, Northern Spain) were genotyped (using polymerase chain reaction) for the ACE insertion/deletion (ACE-I/D) and the AT1R A/C transversion (AT1R-A/C) (3-untranslated region) polymorphisms. RESULTS: The DD-genotype was at a non-significant higher frequency among patients (50%) than in controls (41%). No difference between the two groups was found for the AT1R-genotypes. Distribution of ACE-genotypes according to AT1R-genotypes showed a significant association between ACE-DD and AT1R-CC and early coronary disease. Among the CC patients 58% were DD, compared to 21% among the controls (p = 0.02; OR = 5.32, 95% CI = 1.45, 19.51). We determined the distribution of these genotypes among the hypertensive and non-hypertensive patients. Frequencies of ACE- or AT1R-genotypes did not differ between the two groups. However, we found an interaction between the DD- and CC-genotypes in the group of normotensives. Among the CC patients, 13% of the hypertensives and 75% of the normotensives were DD (p = 0.014). CONCLUSIONS: Our results indicate a synergistic contribution of ACE and AT1R polymorphisms to the risk of coronary artery disease. This gene-gene interaction could have clinical implications. Approximately 2% of individuals in our population are CC + DD, and the genotyping of both polymorphisms could identify those with a high relative risk for coronary artery disease.  相似文献   

18.
The Schizosaccharomyces pombe win1-1 mutant has a defect in the G2-M transition of the cell cycle. Although the defect is suppressed by wis1+ and wis4+, which are components of a stress-activated MAP kinase pathway that links stress response and cell cycle control, the molecular identity of Win1 has not been known. We show here that win1+ encodes a polypeptide of 1436 residues with an apparent molecular size of 180 kDa and demonstrate that Win1 is a MAP kinase kinase kinase that phosphorylates and activates Wis1. Despite extensive similarities between Win1 and Wis4, the two MAP kinase kinase kinases have distinct functions. Wis4 is able to compensate for loss of Win1 only under unstressed conditions to maintain basal Wis1 activity, but it fails to suppress the osmosignaling defect conferred by win1 mutations. The win1-1 mutation is a spontaneous duplication of 16 nucleotides, which leads to a frameshift and production of a truncated protein lacking the kinase domain. We discuss the cell cycle phenotype of the win1-1 cdc25-22 wee1-50 mutant and its suppression by wis genes.  相似文献   

19.
NF-kappaB is activated by various stimuli including inflammatory cytokines and stresses. A key step in the activation of NF-kappaB is the phosphorylation of its inhibitors, IkappaBs, by an IkappaB kinase (IKK) complex. Recently, two closely related kinases, designated IKKalpha and IKKbeta, have been identified to be the components of the IKK complex that phosphorylate critical serine residues of IkappaBs for degradation. A previously identified NF-kappaB-inducing kinase (NIK), which mediates NF-kappaB activation by TNFalpha and IL-1, has been demonstrated to activate IKKalpha. Previous studies showed that mitogen-activated protein kinase/ERK kinase kinase-1 (MEKK1), which constitutes the c-Jun N-terminal kinase/stress-activated protein kinase pathway, also activates NF-kappaB by an undefined mechanism. Here, we show that overexpression of MEKK1 preferentially stimulates the kinase activity of IKKbeta, which resulted in phosphorylation of IkappaBs. Moreover, a catalytically inactive mutant of IKKbeta blocked the MEKK1-induced NF-kappaB activation. By contrast, overexpression of NIK stimulates kinase activities of both IKKalpha and IKKbeta comparably, suggesting a qualitative difference between NIK- and MEKK1-mediated NF-kappaB activation pathways. Collectively, these results indicate that NIK and MEKK1 independently activate the IKK complex and that the kinase activities of IKKalpha and IKKbeta are differentially regulated by two upstream kinases, NIK and MEKK1, which are responsive to distinct stimuli.  相似文献   

20.
Reduction of mitochondrial membrane potential (Psim) and release of cytochrome c from mitochondria appear to be key events during apoptosis. Apoptosis was induced in IC.DP premast cells by the withdrawal of interleukin-3 (IL-3). Psim decreased by 12 hours and cytochrome c was detected in the cytosol at 18 hours. Despite these changes in the mitochondria after 18 hours of IL-3 deprivation, clonogenicity was unaffected when IL-3 was replenished at 18 hours. Activation of v-Abl tyrosine kinase (v-Abl TK) in IC.DP cells before IL-3 depletion led to increased levels of Bcl-XL, prevented reduction of Psim and the release of mitochondrial cytochrome c, and suppressed apoptosis. Activation of v-Abl TK 18 hours after withdrawal of IL-3 when 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号