共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Schevenels G. Lombaert G. Degrande D. Clouteau 《Probabilistic Engineering Mechanics》2007,22(2):150-158
This paper presents a study of wave propagation in an infinite beam on a random Winkler foundation. The spatial variation of the foundation spring constant is modelled as a random field and the influence of the correlation length is studied. As it is impossible to determine the general stochastic Green’s function, the configurational average of the Green’s function and its correlation function are considered. These functions are found through the transformation of the stochastic equation of motion into the Dyson equation for the mean or coherent field and the Bethe–Salpeter equation for the field correlation, as used in the study of wave propagation in random media. The approximate solutions of the Dyson and the Bethe–Salpeter equations are validated by means of a Monte Carlo simulation and compared with the results of a classical Neumann expansion method. Although both methods only involve the second order statistics of the random field, the approximation of the Dyson and the Bethe–Salpeter equations gives better results than the Neumann expansion, at the expense of a larger computational effort. Furthermore, the results show that a small spatial variation of the spring constant has an influence on the response if the correlation length and the wavelength have a similar order of magnitude, while the waves in the beam cannot resolve the spatial variation in the case where the correlation length is much smaller than the wavelength. 相似文献
2.
Finite element modelling of multiple cohesive discrete crack propagation in reinforced concrete beams 总被引:1,自引:0,他引:1
This paper presents a finite element (FE) model for fully automatic simulation of multiple discrete crack propagation in reinforced concrete (RC) beams. The discrete cracks are modelled based on the cohesive/fictitious crack concept using nonlinear interface elements with a bilinear tensile softening constitutive law. The model comprises an energy-based crack propagation criterion, a simple remeshing procedure to accommodate crack propagations, two state variable mapping methods to transfer structural responses from one FE mesh to another, and a local arc-length algorithm to solve system equations characterised by material softening. The bond-slip behaviour between reinforcing bars and surrounding concrete is modelled by a tension-softening element. An example RC beam with well-documented test data is simulated. The model is found capable of automatically modelling multiple crack propagation. The predicted cracking process and distributed crack pattern are in close agreement with experimental observations. The load-deflection relations are accurately predicted up to a point when compressive cracking becomes dominant. The effects of bond-slip modelling and the efficiency and effectiveness of the numerical algorithms, together with the limitations of the current model, are also discussed. 相似文献
3.
Z.-H. Jin 《Engineering Fracture Mechanics》2005,72(12):1805-1817
Some basic issues regarding the cohesive zone modeling of interface fracture between two dissimilar elastic materials are studied. The dependence of the cohesive energy density on the phase angle is first discussed under small scale cohesive zone conditions. It is then shown that in general the stress singularities in tension and shear cannot be simultaneously removed at the cohesive zone tip if a single cohesive zone length is adopted for both tensile and shear fracture modes. Finally, the energy dissipation at the tip of a prescribed cohesive zone is examined using a bilinear cohesive zone model under the uncoupled tension/shear conditions. 相似文献
4.
A previously developed hybrid finite element–scaled boundary finite element method (FEM–SBFEM) is extended to model multiple cohesive crack propagation in reinforced concrete. This hybrid method can efficiently extract accurate stress intensity factors from the semi-analytical solutions of SBFEM and is also flexible in remeshing multiple cracks. Crack propagation in the concrete bulk is modelled by automatically inserted cohesive interface elements with nonlinear softening laws. The concrete–reinforcement interaction is also modelled by cohesive interface elements. The bond shear stress–slip relation of CEB-FIP Model Code 90 and an empirical confining stress–crack opening relation are used to characterise slip and split failure at the concrete–reinforcement interface, respectively. Three RC beams were simulated. The numerical results agreed well with both experimental and numerical results available in the literature. Parametric studies demonstrated the importance of modelling both slip and split failure mechanisms at the concrete–reinforcement interface. 相似文献
5.
Chien‐Ching Ma 《中国工程学刊》2013,36(6):657-664
Abstract A theoretical analysis of steady‐state crack growth in an elastic ideally‐plastic material under small‐scale yielding conditions has been carried out for anti‐plane shear. Asymptotic expansion method is used to construct the solutions for the region near the crack line. Exact solutions for the distribution of strain on the crack line within the primary active plastic zone is obtained. It is shown that the solution reduces to the correct asymptotic form as the crack speed approaches zero (quasi‐static) for any point on the crack line. The results are used to discuss the applicability of quasi‐static solutions to moving steady‐state situations. It is found that if the crack propagation speed is less than 0.1 of the shear wave speed, the quasi‐static solutions can be accurately approximated for the steady state solutions. 相似文献
6.
M. A. SUTTON A. P. REYNOLDS Y. Z. GE X. DENG 《Fatigue & Fracture of Engineering Materials & Structures》2006,29(7):537-545
Using a limited set of residual stress measurements acquired by neutron diffraction and an equilibrium‐based, weighted least square algorithm to reconstruct the complete residual stress tensor field from the measured residual stress data, the effect of weld residual stress on fatigue crack propagation is investigated for 2024‐T351 aluminium alloy plate joined by friction stir welding. Through incorporation of the least squares, complete equilibrated residual stress field into a finite element model of the Friction Stir Weld (FSW) region, progressive crack growth along a direction perpendicular to the welding line is simulated as part of the analysis. Both the residual stress redistribution and the stress intensity factor due to the residual stress field, Kres, are calculated during the crack extension process. Results show that (a) incorporation of the complete, self‐equilibrated residual stress field into a finite element (FE) model of the specimen provides a robust, hybrid approach for assessing the importance of residual stress on fatigue crack propagation, (b) the calculated stress‐intensity factor due to the residual stress field, Kres, has the same trend as measured experimentally by the ‘cut‐compliance method’ and (c) the da/dN results are readily explained with reference to the effect of the residual stress field on the applied stress intensity factor. 相似文献
7.
This paper proposes a boundary element method (BEM) model that is used for the analysis of multiple random crack growth by considering linear elastic fracture mechanics problems and structures subjected to fatigue. The formulation presented in this paper is based on the dual boundary element method, in which singular and hyper-singular integral equations are used. This technique avoids singularities of the resulting algebraic system of equations, despite the fact that the collocation points coincide for the two opposite crack faces. In fracture mechanics analyses, the displacement correlation technique is applied to evaluate stress intensity factors. The maximum circumferential stress theory is used to evaluate the propagation angle and the effective stress intensity factor. The fatigue model uses Paris’ law to predict structural life. Examples of simple and multi-fractured structures loaded until rupture are considered. These analyses demonstrate the robustness of the proposed model. In addition, the results indicate that this formulation is accurate and can model localisation and coalescence phenomena. 相似文献
8.
Motivaded by recent theoretical studies the elastodynamic response of an orthotropic material with a semi-infinite line crack, which propagates intersonically. is revisited through an approach which differs from those used in previous studies. The near tip stress and displacement fields are obtained for Mode I and Mode II of steady state crack propagation. The strain energy release rate analysis confirms that the Mode I is physically impossible due to the order of stress singularity, which is larger then one half. For Model II the order of stress is less than one half and it is shown that a steady state intersonic propagation is allowed only for a particular crack tip velocity which is a function of the material orthotropy. 相似文献
9.
Predictions of crack propagation is a valuable resource for ensuring structural integrity and damage tolerance of aerospace structures. Towards that end, a variational multiscale approach to predict mixed mode in-plane cohesive crack propagation is presented here. To demonstrate applicability and to provide validation of the finite element based predictive methodology, a comparative study of the numerical results with the corresponding experimental observations of crack propagation in laminated fiber reinforced composite panels is presented. 相似文献
10.
A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials 总被引:5,自引:0,他引:5
Numerical investigations are conducted to simulate high-speed crack propagation in pre-strained PMMA plates. In the simulations, the dynamic material separation is explicitly modeled by cohesive elements incorporating an initially rigid, linear-decaying cohesive law. Initial attempts using a rate-independent cohesive law failed to reproduce available experimental results as numerical crack velocities consistently overestimate experimental observations. As proof of concept, a phenomenological rate-dependent cohesive law, which bases itself on the physics of microcracking, is introduced to modulate the cohesive law with the macroscopic crack velocity. We then generalize this phenomenological approach by establishing a rate-dependent cohesive law, which relates the traction to the effective displacement and rate of change of effective displacement. It is shown that this new model produces numerical results in good agreement with experimental data. The analysis demonstrates that the simulation of high-speed crack propagation in brittle structures necessitates the use of rate-dependent cohesive models, which account for the complicated rate-process of dynamic fracture at the propagating crack tip. 相似文献
11.
12.
Spandan Maiti 《Engineering Fracture Mechanics》2006,73(1):22-41
A numerical model of fatigue crack growth retardation in polymers induced by artificial crack closure is proposed. The approach relies on the combination of cohesive modeling and a contact algorithm incorporated in the wake of the advancing crack to account for the effect of the introduced wedge. Numerical results are compared with existing experimental observations, showing the ability of the cohesive model to capture the key features of wedge-induced crack retardation. A study is conducted to quantify the effects of relevant parameters such as applied load levels, wedge distance to the crack tip and wedge stiffness. The model is also discussed in the context of self-healing polymers [White SR, Sottos NR, Moore J, Geubelle PH, Kessler M, Brown E, et al. Autonomic healing of polymer composites. Nature 2001;409:794-7], where the wedging effect is associated with the polymerization of the healing agent. 相似文献
13.
A model for microstructurally short crack propagation in a grain structure of a polycrystalline material is developed. The crack propagation model is based on a crystal plasticity model and a microstructurally short crack propagation model in the spirit of the model by Navarro and de los Rios [A model for short fatigue crack propagation with an interpretation of the short-long crack transition. Fatigue Fract Eng Mater Struct 1987;10:169-86]. Numerical examples, where the combined crystal plasticity and crack propagation model is implemented in a model of a microstructure representing a duplex stainless steel, concludes the paper. Results showing how the misorientation of the crack- and slip-directions between two adjacent austenitic grains influences the crack propagation rate, as the crack propagates across their common grain boundary, are given. 相似文献
14.
Stanislav Pehan 《Engineering Fracture Mechanics》2008,75(5):1266-1283
This paper describes the problem of determining crack initiation location and its influence on crack propagation in a gear tooth’s root. Three different load positions on the gear tooth’s flank were considered for this investigation of crack initiation and propagation. A special test device was used for the single tooth test. It can be concluded from the measurements that a crack can be initiated at very different locations in a tooth’s root and then propagate along its own paths. A numerical investigation into a crack initiation’s position and its influences on its propagation were carried out within the framework of linear fracture mechanics. The influence of a tooth’s load position, the geometry of the tooth’s root, and the influence of non-parallel load distribution on the tooth’s flank were considered when investigating the crack initiation’s position. Results show that linear fracture mechanics can be used for determining crack propagation, if better initial conditions for crack initiation are considered. 相似文献
15.
R. Sunder 《International Journal of Fatigue》1985,7(1):3-12
Procedures have been developed for computer-controlled crack propagation testing under random load sequences. They include certain features which are not available in conventional systems, but which appear essential for random load testing. These include the capability to simulate any desired K-function on standard laboratory specimens and continuous on-line rainflow analysis of the test load sequence to exclude cycles falling below given values of threshold stress intensity, stress level or range. The system also includes a procedure for automated crack-opening displacement based crack opening/closing load level measurement. Experimental studies on AlCu alloy sheet material point to a requirement for development of standards for spectrum loading crack growth testing. 相似文献
16.
Ala Tabiei 《International Journal for Computational Methods in Engineering Science and Mechanics》2021,22(1):21-31
Abstract The phase field method transfers the crack surface area into a domain integral through a smeared damage parameter. As a result, the fracture energy release rate can be directly incorporated into the energy form without tracking of crack surface, and a minimization approach to optimize the crack shape becomes possible. This nonlocal damage approach requires a fine mesh discretization to capture the damage gradient in the smeared crack zone, which produces a significant degree of freedom problem to optimize over the entire domain. In this research, a local-domain based phase field method is proposed. This method considers only elements in critical regions for energy minimization, whose internal energy are dominant, thus significantly reducing the degree of freedom to be solved. A numerical verification is carried out to demonstrate the feasibility of this approach, and simulations are presented to verify the accuracy of the new method. 相似文献
17.
Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method 总被引:1,自引:0,他引:1
A two-step method, coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM), is developed
in this paper for modelling cohesive crack growth in quasi-brittle normal-sized structures such as concrete beams. In the
first step, the crack trajectory is fully automatically predicted by a recently-developed simple remeshing procedure using
the SBFEM based on the linear elastic fracture mechanics theory. In the second step, interfacial finite elements with tension-softening
constitutive laws are inserted into the crack path to model gradual energy dissipation in the fracture process zone, while
the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length
controlled solver. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the
proposed method. The numerical results demonstrate that this two-step SBFEM-FEM coupled method can predict both satisfactory
crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for crack growth
problems with strong snap-back phenomenon. The effects of the tensile strength, the mode-I and mode-II fracture energies on
the predicted load-displacement relations are also discussed. 相似文献
18.
R. BRANCO F. V. ANTUNES R. F. MARTINS 《Fatigue & Fracture of Engineering Materials & Structures》2008,31(6):452-465
Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through-crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations. 相似文献
19.
The conditions determining the fatigue fracture mechanism in quenched and tempered steel are discussed with reference to fatigue crack propagation mechanism (FCPM) maps. Criteria for the change from one fatigue mechanism to another are presented. 相似文献
20.
Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method 总被引:1,自引:0,他引:1
This study develops a method coupling the finite element method (FEM) and the scaled boundary finite element method (SBFEM) for fully-automatic modelling of cohesive crack growth in quasi-brittle materials. The simple linear elastic fracture mechanics (LEFM)-based remeshing procedure developed previously is augmented by inserting nonlinear interface finite elements automatically. The constitutive law of these elements is modelled by the cohesive/fictitious crack model to simulate the fracture process zone, while the elastic bulk material is modelled by the SBFEM. The resultant nonlinear equation system is solved by a local arc-length controlled solver. The crack is assumed to grow when the mode-I stress intensity factor KI vanishes in the direction determined by LEFM criteria. Other salient algorithms associated with the SBFEM, such as mapping state variables after remeshing and calculating KI using a “shadow subdomain”, are also described. Two concrete beams subjected to mode-I and mixed-mode fracture respectively are modelled to validate the new method. The results show that this SBFEM-FEM coupled method is capable of fully-automatically predicting both satisfactory crack trajectories and accurate load-displacement relations with a small number of degrees of freedom, even for problems with strong snap-back. Parametric studies were carried out on the crack incremental length, the concrete tensile strength, and the mode-I and mode-II fracture energies. It is found that the KI ? 0 criterion is objective with respect to the crack incremental length. 相似文献