首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
The amorphous Ge2Sb2Te5 film with stoichiometric compositions was deposited by co-sputtering of separate Ge, Sb, and Te targets on SiO2/Si (100) wafer in ultrahigh vacuum magnetron sputtering apparatus. The crystallization behavior of amorphous Ge2Sb2Te5 film was investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). With an increase of annealing temperature, the amorphous Ge2Sb2Te5 film undergoes a two-step crystallization process that it first crystallizes in face-centered-cubic (fcc) crystal structure and finally fcc structure changes to hexagonal (hex) structure. Activation energy values of 3.636±0.137 and 1.579±0.005 eV correspond to the crystallization and structural transformation processes, respectively. From annealing temperature dependence of the film resistivity, it is determined that the first steep decrease of the resistivity corresponds to crystallization while the second one is primarily caused by structural transformation from  相似文献   

2.
Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.  相似文献   

3.
Lee SH  Jung Y  Agarwal R 《Nano letters》2008,8(10):3303-3309
By combining electron microscopy and size-dependent electrical measurements, we demonstrate surface-induced heterogeneous nucleation-dominant mechanism for recrystallization of amorphous phase-change Ge2Sb2Te5 nanowires. Heterogeneous nucleation theory quantitatively predicts the nucleation rates that vary by 5 orders of magnitude from 190 to 20 nm lengthscales. Our work demonstrates that increasing the surface-to-volume ratio of nanowires has two effects: lowering of the activation energy barrier due to phonon instability and providing nucleation sites for recrystallization. The systematic study of the effect of surface in phase-change behavior is critical for understanding nanoscale phase-transitions and design of nonvolatile memory devices.  相似文献   

4.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   

5.
激光致溅射沉积Ge2Sb2Te5薄膜的结晶行为研究   总被引:2,自引:0,他引:2  
利用XRD研究了激光致溅射沉积Ge2Sb2Te5薄膜的结晶行为,研究发现,与热致相变不同的是,激光致相变只发生从非晶态到FCC晶态结构的转变,从FCC与HCP的结构转变不再发生,这有利于提高相变光盘的信噪比。Ge2Sb2Te5薄膜的结晶程度受初始化功率和转速的影响。  相似文献   

6.
The search for a universal memory storage device that combines rapid read and write speeds, high storage density and non-volatility is driving the exploration of new materials in nanostructured form. Phase-change materials, which can be reversibly switched between amorphous and crystalline states, are promising in this respect, but top-down processing of these materials into nanostructures often damages their useful properties. Self-assembled nanowire-based phase-change material memory devices offer an attractive solution owing to their sub-lithographic sizes and unique geometry, coupled with the facile etch-free processes with which they can be fabricated. Here, we explore the effects of nanoscaling on the memory-storage capability of self-assembled Ge2Sb2Te5 nanowires, an important phase-change material. Our measurements of write-current amplitude, switching speed, endurance and data retention time in these devices show that such nanowires are promising building blocks for non-volatile scalable memory and may represent the ultimate size limit in exploring current-induced phase transition in nanoscale systems.  相似文献   

7.

\(\text {Ge}_2\text {Sb}_2\text {Te}_5\) (GST) is considered a promising candidate for next-generation data storage devices due to its unique property of non-volatility and low power consumption. In present work, the bulk alloys and thin films of (\(\text {Ge}_2\text {Sb}_2\text {Te}_5\))\(_{100-x}\text {Ga}_x\) (x = 0, 3, and 10) are prepared using melt quenching and thermal deposition method, respectively. The effect of Ga doping on host composition is investigated by analyzing X-ray diffraction patterns and field emission scanning electron microscope images. From obtained results, it is found that all doped thin films retained the amorphous nature and exhibited uniform and smooth morphology. In Raman spectra, the appearance of a new peak in 10% Ga-doped GST thin film indicated an alteration in the atomic arrangement of host lattice. Transmission spectra revealed the highly transparent nature of all deposited thin films in the near-infrared region. The optical band gap of Ga-doped GST thin film is lower than that of the pure GST thin film which can be correlated with an increase in band tailing, attributed to an increase in localized defect states in the band gap. Due to the pronounced electronegativity difference between the Ga and Te element, new Ga–Te bonds with a higher number of wrong bonds (Ge–Ge, Sb–Sb, and Ge–Sb) are expected to thermally stabilize the amorphous phase. Such results predict the better performance of Ga-doped GST composition for better performance of phase-change random access memory.

  相似文献   

8.
Jung Y  Nam SW  Agarwal R 《Nano letters》2011,11(3):1364-1368
By combining high-resolution transmission electron microscopy (HRTEM) characterization and electrical measurements on a unique device platform, we study the reversible electrically-driven phase-change characteristics of self-assembled Ge(2)Sb(2)Te(5) nanowires. Detailed HRTEM analyses are used to correlate and understand the effect of full and intermediate structural transformations on the measured electrical properties of the nanowire devices. The study demonstrates that our unique approach has the potential to provide new information regarding the dynamic structural and electrical states of phase-change materials at the nanoscale, which will aid the design of future phase-change memory devices.  相似文献   

9.
Phase-change memory materials have stimulated a great deal of interest although the size-dependent behaviors have not been well studied due to the lack of method for producing their nanoscale structures. We report the synthesis and characterization of GeTe and Sb(2)Te(3) phase-change nanowires via a vapor-liquid-solid growth mechanism. The as-grown GeTe nanowires have three different types of morphologies: single-crystalline straight and helical rhombohedral GeTe nanowires and amorphous curly GeO(2) nanowires. All the Sb(2)Te(3) nanowires are single-crystalline.  相似文献   

10.
Ge2Sb2Te5材料与非挥发相转变存储器单元器件特性   总被引:1,自引:0,他引:1  
对Ge2Sb2Te5材料的结构、形貌和电学特性进行了表征,将材料应用于不挥发存储单元器件中并研究了器件性能。研究了退火温度对薄膜电阻率的影响,发现在从高阻向低阻状态转变的过程中,电阻率下降的趋势发生变化,形成拐点,分析表明这是由于在拐点处结构由面心立方向密排六方结构转变所致;对不同厚度Ge2Sb2Te5薄膜的电阻率进行了分析,结果表明当厚度薄于70nm时,电阻率随厚度显著上升而迁移率下降,材料晶态电学性能的测量显示,材料有正电阻温度系数并以空穴导电;测量了Ge2Sb2Fe5非挥发相转变存储器单元的I-V曲线,发现有阈值特性,在晶态时电学特性呈欧姆特性,非晶态时I-V低场为线性关系,电场较高时呈指数关系。  相似文献   

11.
Various compositions of SbxTe phase-change films have been investigated by means of in situ temperature-dependent resistance measurement. Although crystallization temperature of Sb3Te is about 536 K, a little lower than those of Sb2Te and Sb4Te, it has a better data retention performance than the other two compositions. X-ray diffraction patterns imply that poly-crystalline structures of Sb-Te alloys are all hexagonal, and phase separation appears in SbTe3, Sb2Te, Sb3Te and Sb4Te alloys. Sb2Te and Sb3Te have been selected for phase-change random access memory devices. RESET voltage for Sb3Te is 1.2 V when the voltage pulse width is 50 ns, 0.3 V lower than that for Sb2Te. By using the voltage pulse width of 200 ns, Sb3Te needs 1.8 V and 4 V to complete SET-RESET performance, 0.4 V and 0.5 V lower than Sb2Te respectively. It indicates that Sb3Te is more suitable for the application of phase-change random access memory.  相似文献   

12.
The optical absorption properties of phase-change optical recording thin films subjected to various initialization conditions were investigated. The effects of initialization power and velocity on optical constants of the Ge2Sb2Te5 thin films were also studied. The energy gap of Ge2Sb2Te5 thin films subjected to various initialization conditions was also obtained. It was found that the optical energy gap of the Ge2Sb2Te5 thin films increased with either increasing initialization laser power or decreasing initialization velocity, with peak of 0.908 eV at laser power of 1000 mW or initialization velocity of 4.0 m/s, but the continued increasing initialization laser power or decreasing initialization velocity resulted in the decrease of the optical energy gap. The change of the optical energy gap was discussed on the basis of amorphous crystalline transformation.  相似文献   

13.
Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GST shows mainly small rings and cavities. The local environment of Sb in both forms of AIST is a distorted 3+3 octahedron. These structures suggest a bond-interchange model, where a sequence of small displacements of Sb atoms accompanied by interchanges of short and long bonds is the origin of the rapid crystallization of a-AIST. It differs profoundly from crystallization in a-GST.  相似文献   

14.
We present the results of crystallization studies in thin-film samples of amorphous and crystalline Ge(x)Sb(y)Te(z). The experiments, conducted at moderately elevated temperatures, are based on measurements of the first-order diffraction efficiency from a two-dimensional periodic array of recorded marks. When the samples are slowly heated above room temperature, changes in the efficiencies of various diffracted orders give information about the on-going crystallization process within the sample. Two different compositions of the GeSbTe alloy are used in these experiments. Measurements on Ge(2)Sb(2.3)Te(5) films show crystallization dominated by nucleation. For the Sb-rich eutectic composition Ge-(SbTe), crystallization is found to be dominated by growth from crystalline boundaries. We also show that crystalline marks written by relatively high-power laser pulses are different in their optical properties from the regions crystallized by slow heating of the sample to moderate temperatures.  相似文献   

15.
Khulbe PK  Xun X  Mansuripur M 《Applied optics》2000,39(14):2359-2366
We present the results of crystallization and amorphization studies on a thin-film sample of Ge(2)Sb(2.3)Te(5), encapsulated in a quadrilayer stack as in the media of phase-change optical disk data storage. The study was conducted on a two-laser static tester in which one laser, operating in pulsed mode, writes either amorphous marks on a crystalline film or crystalline marks on an amorphous film. The second laser, operating at low power in the cw mode, simultaneously monitors the progress of mark formation in terms of the variations of reflectivity both during the write pulse and in the subsequent cooling period. In addition to investigating some of the expected features associated with crystallization and amorphization, we noted certain curious phenomena during the mark-formation process. For example, at low-power pulsed illumination, which is insufficient to trigger the phase transition, there is a slight change in the reflectivity of the sample. This is believed to be caused by a reversible change in the complex refractive index of the Ge(2)Sb(2.3)Te(5) film in the course of heating above the ambient temperature. We also observed that the mark-formation process may continue for as long as 1 mus beyond the end of the write laser pulse. This effect is especially pronounced during amorphous mark formation under high-power, long-pulse illumination.  相似文献   

16.
We develop a theory of the crystallization dynamics of Ge(2)Sb(2.3)Te(5) thin films that shows good qualitative agreement with experimental reflectivity results from a two-laser static tester. The theory is adapted from the nucleation theory of liquid droplets from supersaturated vapor and elucidates the physics underlying the amorphous-to-crystalline phase transformation under short-pulse excitation. In particular, the theory provides a physical picture in which crystalline islands, or basic embryos, are thermally activated in the amorphous material and subsequently grow as stable nuclei are formed.  相似文献   

17.
采用聚焦脉冲激光研究了Ge2Sb2Te5薄膜在沉积和激光淬火两种非晶态下反射率与激光脉冲宽度变化的关系,发现沉积态的Ge2Sb2Te5薄膜在晶化触发阶段内的反射率随激光脉冲宽度增加而减小,经过激光淬火的非晶态Ge2Sb2Te5薄膜在晶化触发阶段内的反射率随激光脉冲宽度增加而变化平缓。本文借用气-液体系中过饱和度分析液滴形成的原理,从统计物理学角度详细研究了两种非晶态Ge2Sb2Te5薄膜在脉冲激光作用下的晶化过程及机理,结果表明,当Ge2Sb2Te5的非晶态程度处于未饱和或饱和状态时不形成晶核;当Ge2Sb2Te5的非晶态程度处于过饱和状态时,此时的Ge2Sb2Te5为亚稳态,可能形成大小不等的晶核,但只有半径大于临界晶核尺寸时才可能长大成晶粒,而应力降低晶化能垒,增加非晶态Ge2Sb2Te5的过饱和度是导致沉积态与激光淬火态的Ge2Sb2Te5薄膜在晶化触发阶段内反射率随激光脉冲宽度变化规律不一致的根本原因,并据此解释了Ge2Sb2Te5薄膜在这两种状态下的反射率随激光脉冲宽度的变化特点及规律。  相似文献   

18.
We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.  相似文献   

19.
Differential scanning calorimetry (DSC) is widely used to study the stability of amorphous solids, characterizing the kinetics of crystallization close to the glass-transition temperature T(g). We apply ultrafast DSC to the phase-change material Ge(2)Sb(2)Te(5) (GST) and show that if the range of heating rates is extended to more than 10(4) K s(-1), the analysis can cover a wider temperature range, up to the point where the crystal growth rate approaches its maximum. The growth rates that can be characterized are some four orders of magnitude higher than in conventional DSC, reaching values relevant for the application of GST as a data-storage medium. The kinetic coefficient for crystal growth has a strongly non-Arrhenius temperature dependence, revealing that supercooled liquid GST has a high fragility. Near T(g) there is evidence for decoupling of the crystal-growth kinetics from viscous flow, matching the behaviour for a fragile liquid suggested by studies on oxide and organic systems.  相似文献   

20.
Rao F  Song Z  Ren K  Zhou X  Cheng Y  Wu L  Liu B 《Nanotechnology》2011,22(14):145702
Si-Sb-Te materials including Te-rich Si?Sb?Te? and Si(x)Sb?Te? with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si(x)Sb?Te? shows better thermal stability than Ge?Sb?Te? or Si?Sb?Te? in that Si(x)Sb?Te? does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si(x)Sb?Te? improves. The 10 years retention temperature for Si?Sb?Te? film is ~393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si(x)Sb?Te? films also show improvement on thickness change upon annealing and adhesion on SiO? substrate compared to those of Ge?Sb?Te? or Si?Sb?Te? films. However, the electrical performance of PCRAM cells based on Si(x)Sb?Te? films with x > 3.5 becomes worse in terms of stable and long-term operations. Si(x)Sb?Te? materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号