首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism underlying myocardial depression after procedures involving cardioplegia are unknown. We tested the hypothesis that such depression was associated with altered myofilament interactions, using isolated hearts perfused with warm (37 degreesC), oxygenated (95% O2/5% CO2) Krebs-Ringer's bicarbonate (KRB) buffer. A latex balloon was inserted into the left ventricle (LV) to monitor LV function. All hearts underwent a 30-min equilibration period. One group of hearts (CPL+RPR) were arrested with St Thomas #2 cardioplegic solution (4 degreesC; 3 ml followed by 1 ml every 15 min) for 120 min, followed by reperfusion with warm, oxygenated KRB. A second group underwent cardioplegic arrest with no reperfusion (CPL). A third group underwent 60 min of warm, oxygenated perfusion with KRB beyond the equilibration period (60 MIN). The last group only underwent the equilibration period (EQUIL). LV function was assessed at the end of equilibration, and at 30 and 60 min of reperfusion (or 30 and 60 min additional perfusion in the 60 MIN group). All hearts were frozen at the end of the temporal protocol for each group, and stored at -70 degreesC for later measurement of Ca2+-stimulated Mg2+ ATPase activity after isolation of myofibrils. CPL+RPR hearts demonstrated significant depression of systolic pressure and elevation diastolic pressure at fixed volumes, compared to baseline and 60 MIN group values. There were no significant changes in the amount of constituent myofilament proteins, as assessed by densinometric analyses of Western blots. There were also no changes in the minimal or maximal ATPase activities, nor in the pCa50, indicating no effect of cardioplegic arrest on myofilament sensitivity to calcium. However, all hearts that underwent cardioplegic arrest were found to have significantly lower Hill coefficients (1.85+/-0.09 and 1.85+/-0.13 v 2.31+/-0.13 and 2.34+/-0. 14 in CPL+RPR and CPL v 60 MIN and EQUIL hearts, respectively), suggesting decreased co-operativity of the actomyosin interaction. Such a decrease in co-operativity would contribute to both the systolic and diastolic alterations associated with myocardial depression after cardioplegic arrest. These changes were associated with the cardioplegic event, and appeared to be independent of reperfusion.  相似文献   

2.
OBJECTIVE: Encouraging results on myocardial preconditioning in experimental models of infarction, stunning or prolonged ischemia raise the question whether preconditioning techniques may enhance conventional cardioplegic protection used for routine coronary surgery. METHODS: A prospective clinical trial was conducted to investigate the effect of additional ischemic normothermic preconditioning prior to cardioplegic arrest applying cold blood cardioplegia in patients scheduled for routine coronary surgery (3 vessel disease, left ventricular ejection fraction > 50%). Two cross clamp periods of 5 min with the hearts beating in sinus rhythm were applied followed by 10 min of reperfusion, each (n = 7, group I). Inducing moderate hypothermia cold blood cardioplegia was delivered antegradely. In control groups, cold intermittent blood cardioplegia (n = 7, group II) was used alone. Coronary sinus effluents were analyzed for release of creatine kinase (CK), CK-MB, lactate, and troponin T at 1, 3, 6, 9, and 12 h. In addition, postoperative catecholamine requirements were monitored. RESULTS: The procedure was tolerated well, and no perioperative myocardial infarction in any of the groups studied occurred. Concentrations of lactate tended to be higher in group I, but this difference was not significant. In addition, no significant differences for concentrations of CK, CK-MB, and troponin T were found. Following ischemic preconditioning an increased dosage of dopamine was required within the first 12 h postoperatively (group I: 2.63 +/- 1.44 microg/kg/min, group II: 0.89 +/- 1.06 microg/kg/min). CONCLUSIONS: Combining ischemic preconditioning and cardioplegic protection with cold blood cardioplegia does not appear to ameliorate myocardial protection when compared to cardioplegic protection applying cold blood cardioplegia alone. Inversely, contractile function seemed to be impaired when applying this protocol of ischemic preconditioning.  相似文献   

3.
ATP-sensitive potassium channel (KATP) openers directly protect ischemic myocardium, which may make them useful for treating patients undergoing cardiopulmonary bypass, but whether high-potassium-containing cardioplegic solutions would inhibit their protective effects is not clear. We determined whether additional protection greater than that provided by cardioplegia could be found for KATP openers. We studied the effect of 10 microM cromakalim or BMS-180448 pretreatment (10 min before cardioplegia) on severity of ischemia in isolated rat hearts given normothermic or cold St. Thomas' cardioplegic solution (16 mM K+). After cardioplegic arrest, the hearts were subjected to 30-min (normothermic) or 150-min (hypothermic) global ischemia, each followed by 30-min reperfusion. The cardioplegic solutions significantly protected the hearts, as measured by increased time to onset of contracture, enhanced recovery of function, and reduced lactate dehydrogenase (LDH) release. Cromakalim and BMS-180448 both further significantly increased time to contracture in both normothermic and hypothermic arrested hearts; this was accompanied by enhanced recovery of reperfusion contractile function and reduced cumulative LDH release. This additional protective effect of the K ATP openers was abolished by glyburide. Because administration of the K ATP openers only with the cardioplegic solution (1 min before global ischemia) was not efficacious, >1-min pretreatment apparently is necessary. K ATP openers provide additional protection to that afforded by cold or normothermic potassium cardioplegia in rat heart, although the timing of treatment may be crucial.  相似文献   

4.
K Bolling  M Kronon  BS Allen  T Wang  S Ramon  H Feinberg 《Canadian Metallurgical Quarterly》1997,113(6):994-1003; discussion 1003-5
OBJECTIVES: Blood cardioplegia predominates in the adult because it provides superior myocardial protection, especially in the ischemically stressed heart. However, the superiority of blood over crystalloid cardioplegia in the pediatric population is unproved. Furthermore, because many pediatric hearts undergo a preoperative stress such as hypoxia, it is important to compare the different methods of protection in both normal and hypoxic hearts. METHODS: Twenty neonatal piglets were supported by cardiopulmonary bypass and subjected to 70 minutes of cardioplegic arrest. Of 10 nonhypoxic hearts, five (group 1) were protected with blood cardioplegia and five (group 2) with crystalloid cardioplegia (St. Thomas' Hospital solution). Ten other piglets underwent 60 minutes of ventilator hypoxia (inspired oxygen concentration 8% to 10%) before cardioplegic arrest. Five (group 3) were then protected with blood cardioplegia and the other five (group 4) with crystalloid cardioplegia. Myocardial function was assessed by means of pressure volume loops and expressed as a percentage of control. Coronary vascular resistance was measured with each infusion of cardioplegic solution. RESULTS: No difference was noted between blood (group 1) or crystalloid cardioplegia (group 2) in nonhypoxic hearts regarding systolic function (end-systolic elastance 104% vs 103%), diastolic stiffness (156% vs 159%), preload recruitable stroke work (102% vs 101%), or myocardial tissue edema (78.9% vs 78.9%). Conversely, in hearts subjected to a hypoxic stress, blood cardioplegia (group 3) provided better protection than crystalloid cardioplegia (group 4) by preserving systolic function (end-systolic elastance 106% vs 40%; p < 0.05) and preload recruitable stroke work (103% vs 40%; p < 0.05); reducing diastolic stiffness (153% vs 240%; p < 0.05) and myocardial tissue edema (79.6% vs 80.1%); and preserving vascular function, as evidenced by unaltered coronary vascular resistance (p < 0.05). CONCLUSION: This study demonstrates that (1) blood or crystalloid cardioplegia is cardioprotective in hearts not compromised by preoperative hypoxia and (2) blood cardioplegia is superior to crystalloid cardioplegia in hearts subjected to the preoperative stress of acute hypoxia.  相似文献   

5.
BACKGROUND: Cold cardioplegia can induce rapid cooling contracture. The relations of cardioplegia-induced cooling contracture to myocardial temperature or myocyte calcium are unknown. METHODS: Twelve crystalloid-perfused isovolumic rat hearts received three 2-minute cardioplegic infusions (1 mmol/L calcium) at 4 degrees, 20 degrees, and 37 degrees C in random order, each followed by 10 minutes of beating at 37 degrees C. Finally, warm induction of arrest by a 1-minute cardioplegic infusion at 37 degrees C was followed by a 1-minute infusion at 4 degrees C. Indo-1 was used to measure the intracellular Ca2+ concentration in 6 of these hearts. Additional hearts received hypoxic, glucose-free cardioplegia at 4 degrees or 37 degrees C. RESULTS: After 1 minute of cardioplegia at 4 degrees, 20 degrees, and 37 degrees C, left ventricular developed pressure rose rapidly to 54% +/- 3%, 43% +/- 3%, and 18% +/- 1% of its prearrest value, whereas the intracellular Ca2+ concentration reached 166% +/- 23%, 94% +/- 4%, and 37% +/- 10% of its prearrest transient. Coronary flow was 5.7 +/- 0.2, 8.7 +/- 0.3, and 12.6 +/- 0.6 mL/min, respectively. Warm cardioplegia induction at 37 degrees C reduced left ventricular developed pressure and [Ca2+]i during subsequent 4 degrees C cardioplegia by 16% (p = 0.001) and 34% (p = 0.03), respectively. Adenosine triphosphate and phosphocreatine contents were lower after 4 degrees C than after 37 degrees C hypoxic, glucose-free cardioplegia. CONCLUSIONS: Rapid cooling during cardioplegia increases left ventricular pressure, [Ca2+]i and coronary resistance, and is energy consuming. The absence of rapid cooling contracture may be a benefit of warm heart operations and warm induction of cardioplegic arrest.  相似文献   

6.
BACKGROUND: The site where volatile anesthetics inhibit endothelium-dependent, nitric oxide-mediated vasodilation is unclear. To determine whether anesthetics could limit endothelium-dependent nitric oxide production by inhibiting receptor-mediated increases in cytosolic Ca2+, experiments were performed to see if the inhalational anesthetics halothane, isoflurane, and enflurane affect intracellular Ca2+ ([Ca2+]i) transients induced by the agonists bradykinin and adenosine triphosphate in cultured bovine aortic endothelial cells. METHODS: Bovine aortic endothelial cells, which had been loaded with the fluorescent Ca2+ indicator Fura-2, were added to medium preequilibrated with volatile anesthetic (1.25% and 2.5% for isoflurane, 1.755 and 3.5% for enflurane, and 0.75% and 1.5% for halothane). In Ca(2+)-containing medium, intracellular Ca2+ transients were elicited in response to bradykinin (10 nM and 1 microM) or adenosine triphosphate (1 microM and 100 microM). RESULTS: Both bradykinin and adenosine triphosphate triggered a rapid rise to peak [Ca2+]i followed by a gradual decline to a plateau above the resting level. Although basal [Ca2+]i was unaltered by the anesthetics, both halothane and enflurane, in a dose-dependent manner, depressed the peak and plateau of the [Ca2+]i transient elicited by 10 nM bradykinin, whereas isoflurane had no effect. When [Ca2+]i transients were elicited by 1 microM bradykinin, halothane (1% and 5%) did not alter peak and plateau levels. Halothane and enflurane also decreased [Ca2+]i transients evoked by 1 microM and 100 microM adenosine triphosphate, whereas isoflurane also had no effect in this setting. CONCLUSIONS: Halothane and enflurane, but not isoflurane, inhibit bradykinin- and adenosine triphosphate-stimulated Ca2+ transients in endothelial cells. Limitations of Ca2+ availability to activate constitutive endothelial nitric oxide synthase could allow for part, but not all, of the inhibition of endothelium-dependent nitric oxide-mediated vasodilation by inhalational anesthetics.  相似文献   

7.
BACKGROUND: This study extends previous investigations of global and regional myocardial blood flow during early postcardioplegia reperfusion. The hypothesis tested is that coronary vascular regulation becomes abnormal within 3 minutes after the start of postcardioplegia reperfusion. METHODS: Pigs (n = 40) were supported by cardiopulmonary bypass and 38 degrees C blood cardioplegic solution was infused. A control preischemic microsphere injection (No. 1) was given in asystolic hearts. Groups 1 to 3 had 1 hour of hypothermic cardioplegic arrest. Group 4 (control group) had 1 hour of perfusion without cardioplegia. A blood cardioplegic solution at 38 degrees C and 70 mm Hg pressure was infused to maintain asystole during the initial 7 to 10 minutes of reperfusion in all groups. Left ventricular intracavitary pressures were set at 0, 10, 20, or 0 mm Hg in groups 1, 2, 3, and 4 (n = 10 pigs per group), respectively, during the initial 7 minutes of reperfusion. The ventricle was then decompressed. At 30 seconds, 3 minutes, and 6 minutes after reperfusion, microsphere injections 2, 3, and 4 were given in asystolic hearts. Microsphere injection No. 5 was given 10 minutes after reperfusion in beating vented hearts. RESULTS: (1) Left ventricular distention during the initial 7 minutes of reperfusion after hypothermic cardioplegic arrest attenuates postischemic hyperemia. (2) Left ventricular intracavitary pressure of 20 mm Hg during reperfusion causes a decrease in endocardial blood flow relative to epicardial blood flow at 6 minutes after reperfusion. (3) Global myocardial blood flow during postcardioplegia reperfusion falls significantly below preischemic control values despite the return of electromechanical activity. INFERENCE: Coronary vascular regulation (i.e., coronary resistance and metabolic flow recruitment) becomes abnormal within 3 minutes after the start of reperfusion after hypothermic blood cardioplegic arrest.  相似文献   

8.
The effects of 6-h hypothermic cardioplegic arrest on myocardial biochemical, morphologic, and functional recovery were investigated in two groups of dogs. Group 1 (n = 6) was subjected to hypothermia of 15 degrees C and group 2 (n = 6) was subjected hypothermia of 5 degrees C. Although the myocardial calcium (Ca) concentration was significantly higher at the end of reperfusion in group 2 compared to group 1, the MB-fraction of creatine kinase, mitochondrial aspartate aminotransferase, recovery of left ventricular systolic function, and mitochondrial morphologic integrity were better in group 2 than in group 1. These findings suggest that hypothermia of 5 degrees C in 6-h cardioplegia is not necessarily coupled with interference in myocardial contractility, despite the Ca overload that occurs during reperfusion.  相似文献   

9.
An increase in synaptosomal Ca2+ triggers neurotransmitter release and volatile anesthetics have been shown to inhibit neurotransmitter release by inhibition of Ca2+ entry. We have examined the effect of isoflurane and halothane on the kinetics of increase and decrease of Ca2+ in rat cerebrocortical synaptosomes ([Ca2+]in). We have also used specific Ca2+ antagonists to examine the role of L-, N-, and P-type Ca2+ channels. Synaptosomal [Ca2+]in was measured spectrofluorometrically using fura-2 as a Ca2+ reporter; Ca2+ transients were initiated by depolarization with 40 mM KCl. We found that < or = 1 minimum alveolar anesthetic concentration halothane and isoflurane decreased peak [Ca2+]in by approximately 40%, that both anesthetics decreased the rate of [Ca2+]in increase and decrease, that specific voltage-dependent calcium channel antagonists had little effect on peak or plateau [Ca2+]in, and that the volatile anesthetics increased the permeability of synaptosomal membranes to Ca2+. These results suggest that the volatile anesthetics, at clinically relevant concentrations, can alter Ca2+ homeostasis in the synapse. IMPLICATIONS: Clinically relevant concentrations of halothane and isoflurane markedly depress K+-evoked increases in rat cerebrocortical synaptosomal calcium (Ca2+) unrelated to L-, N-, and P-type voltage-dependent calcium channels and increase the Ca2+ permeability of the synaptosomal membrane. These changes in Ca2+ dynamics could have profound effects on Ca2+ signaling in the synapse.  相似文献   

10.
BACKGROUND: This study was designed to evaluate the adenosine-triphosphate-sensitive potassium channel opener pinacidil as a blood cardioplegic agent. METHODS: Using a blood-perfused, parabiotic, Langendorff rabbit model, hearts underwent 30 minutes of normothermic ischemia protected with blood cardioplegia (St. Thomas' solution [n = 8] or Krebs-Henseleit solution with pinacidil [50 micromol/L, n = 81) and 30 minutes of reperfusion. Percent recovery of developed pressure, mechanical arrest, electrical arrest, reperfusion ventricular fibrillation, percent tissue water, and myocardial oxygen consumption were compared. RESULTS: The percent recovery of developed pressure was not different between the groups (52.3 +/- 5.9 and 52.8 +/- 6.9 for hyperkalemic and pinacidil cardioplegia, respectively). Pinacidil cardioplegia was associated with prolonged electrical and mechanical activity (14.4 +/- 8.7 and 6.1 +/- 3.9 minutes), compared with hyperkalemic cardioplegia (1.1 +/- 0.6 and 1.1 +/- 0.6 minutes, respectively; p < 0.05). Pinacidil cardioplegia was associated with a higher reperfusion myocardial oxygen consumption (0.6 +/- 0.1 versus 0.2 +/- 0.0 mL/100 g myocardium/beat; p < 0.05) and a higher percent of tissue water (79.6% +/- 0.7% versus 78.6% +/- 1.2%; p < 0.05). CONCLUSIONS: Systolic recovery was not different between groups, demonstrating comparable effectiveness of pinacidil and hyperkalemic warm blood cardioplegia.  相似文献   

11.
The optimal temperature of blood cardioplegia remains controversial. Interstitial myocardial pH was monitored online with a probe that was inserted in the anterior wall of the left ventricle. Venous pH, lactate production, and creatine kinase and troponin T release were measured in coronary sinus blood obtained in 14 dogs after ischemic arrest periods of 5, 10, 20, and 40 minutes with warm (n = 7; mean myocardial temperature, 35 degrees +/- 2 degrees C) and cold (n = 7; mean myocardial temperature, 12 degrees +/- 1 degree C) blood cardioplegic protection. Blood cardioplegic solution was delivered at a rate of 100 mL/min during the 10 minutes between each ischemic arrest. The interstitial myocardial pH decreased significantly (p < 0.05) from 7.1 +/- 0.3 to 6.53 +/- 0.3 after ischemia in animals perfused with warm blood cardioplegia and from 7.04 +/- 0.3 to 6.64 +/- 0.1 in those receiving cold blood cardioplegic protection; however, the difference between the groups was not significant (p > 0.05). Lactate production and creatine kinase and troponin T release increased significantly after ischemia, but there was no difference in the changes between the warm and cold blood cardioplegia groups. In conclusion, ischemia caused significant changes in all variables measured, and these changes were directly proportional to the duration of ischemia. However, there was no significant difference (p > 0.05) in the myocardial metabolic changes between the warm and cold blood cardioplegia groups in terms of the duration of ischemic arrest studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
BACKGROUND: Volatile anesthetics exert profound effects on the heart, probably through their effect on Ca2+ movements during the cardiac cycle. Ca2+ movements across the sarcolemma are thought to involve mainly Ca2+ channels and the Na+/Ca2+ exchanger. We have therefore investigated the action of halothane, isoflurane, and enflurane on Na+/Ca2+ exchange and Ca2+ channel activity to assess the contribution of these pathways to the observed effect of the anesthetics on the myocardium. METHODS: Sarcolemmal ion fluxes were investigated using radioisotope uptake by isolated adult rat heart cells in suspension. Na+/Ca2+ exchange activity was measured from 45Ca2+ uptake by Na(+)-loaded cells. Ca2+ channel activity was measured from verapamil-sensitive trace 54Mn2+ uptake during electric stimulation. RESULTS: Halothane, isoflurane, and enflurane inhibited Na+/Ca2+ exchange completely, with similar potency when concentrations were expressed in millimolar units in aqueous medium but not when expressed as minimum alveolar concentration (MAC). The inhibition by enflurane was particularly strong, > 50%, at 2 MAC. In contrast, the three anesthetics inhibited Ca2+ channels with similar potency when concentrations were expressed as MAC but not when expressed in millimolar units in aqueous medium. Hill plots of pooled data with all three anesthetics showed a slope of -3.87 +/- 0.50 for inhibition of Na+/Ca2+ exchange and -1.73 +/- 0.19 for inhibition of Ca2+ channels. CONCLUSIONS: Halothane, isoflurane, and enflurane inhibit both Na+/Ca2+ exchange and Ca2+ channels at concentrations relevant to anesthesia, although they exhibit differences in potency and number of sites of action. At 1.5 MAC, halothane inhibits Ca2+ channels more than Na+/Ca2+ exchange, whereas enflurane inhibits Na+/Ca2+ exchange more than Ca2+ channels. Isoflurane inhibited both systems equally. The inhibition of Ca2+ influx by these agents is likely to contribute to their negative inotropic effect in the heart. The inhibition of Na+/Ca2+ exchange by enflurane may account for its observed action of delaying relaxation in species lacking sarcoplasmic reticulum.  相似文献   

13.
BACKGROUND: A major reduction in the energy demand of the myocardium results from the electromechanical arrest, and cooling contributes to a lesser degree to this reduction. It is from this assumption that strategies of myocardial protection, utilizing warm blood cardioplegic induction, followed by cold cardioplegia with terminal warm reperfusion before removal of the aortic cross clamp, became established as optimal myocardial protection. Continuous normothermic perfusion 'closed the loop' by avoiding myocardial ischemia and linking warm induction and terminal reperfusion. A series of laboratory and clinical data confirmed the benefits of warm heart surgery on myocardial function and metabolism. The disadvantages of continuous warm blood cardioplegia including disturbance of the operative field, led surgeons to administer warm hyperkalaemic blood intermittently as a new cardioplegic strategy. METHODS: This review examines the laboratory and clinical data with reference to the intermittent warm blood cardioplegia, to establish its experimental basis and place in clinical practice. CONCLUSIONS: Experimental observation and clinical application have established intermittent warm blood cardioplegia as a practical, effective and cheap myocardial protection technique, particularly with reference to coronary artery surgery.  相似文献   

14.
BACKGROUND: We determined whether activation of the nitric oxide/cyclic guanosine monophosphate pathway by sodium nitroprusside (SNP) protects hearts subjected to cardioplegic arrest and prolonged hypothermic storage. METHODS: Isolated rat hearts arrested with St. Thomas' II cardioplegia and stored at 3 degrees +/- 1 degree C for 8 hours were reperfused at 37 degrees C in Langendorff (10 minutes) and working (60 minutes) modes. RESULTS: During reperfusion, left ventricular work was depressed in stored hearts relative to fresh hearts. When present during arrest, storage, and both reperfusion phases, SNP (200 mumol/L) improved work to values close to those in fresh hearts. When added only during the 10-minute period of Langendorff reperfusion, SNP also improved the subsequent recovery of work. This effect was antagonized by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Poststorage coronary perfusion was not increased by SNP. CONCLUSIONS: The ability of SNP to enhance recovery independent of changes in coronary perfusion and in an ODQ-sensitive manner suggests that SNP-induced protection is due to activation of the myocardial nitric oxide/cyclic guanisine monophosphate pathway. These results suggest that supplementing cardioplegic solutions with SNP, administering SNP during early reperfusion, or both may offer additional means to improve donor heart preservation.  相似文献   

15.
Although hypothermia and cardioplegic cardiac arrest provide effective protection during cardiac surgery, ischemia of long duration, poor preoperative myocardial function, and ventricular hypertrophy may lead to heterogeneous delivery of cardioplegic solutions, incomplete protection, and impaired postischemic recovery. Calcium antagonists are potent cardioprotective agents, but their efficacy in the presence of cold cardioplegia is still controversial, especially in heart failure, since it is often believed that failing hearts are more sensitive to their negative inotropic and chronotropic actions. However, recent data have demonstrated that the benzothiazepine-like calcium antagonists diltiazem and clentiazem, in selected dose ranges, elicit significant cardioprotection independently of intrinsic cardiodepression, thus lending support to their use in cardioprotective maneuvers involving the failing heart. We therefore evaluated the cardioprotective interaction of diltiazem, clentiazem, and cold cardioplegia in both normal and failing ischemic hearts. Hearts were excised from 200- to 225-day-old cardiomyopathic hamsters (CMHs) of the UM-X7.1 line and age-matched normal healthy controls. Ex vivo perfusion was performed at a constant pressure (140 cmH2O; 1 cmH2O = 98.1 Pa) according to the method of Langendorff. Heart rate, left ventricular developed pressure (LVDP), and coronary flow were monitored throughout the study. Global ischemia was produced for 90 min by shutting down the perfusate flow, followed by reperfusion for 30 min. Normal and failing CMH hearts were either untreated (control) or perfused at the onset of global ischemia with one of the following combinations: cold cardioplegia alone (St. Thomas' Hospital cardioplegic solution, 4 degrees C, infused for 2 min), cold cardioplegia + 10 nM diltiazem, or cold cardioplegia + 10 nM clentiazem. The cardiac and coronary dilator properties of 10 nM diltiazem and 10 nM clentiazem alone were investigated in separate groups of isolated preparations. Failing CMH hearts had lower basal LVDP (42 +/- 2 vs. 77 +/- 2 mmHg (1 mmHg = 133.3 Pa) for normal hearts, p < 0.05), while coronary flow was only slightly reduced (5.6 +/- 0.2 vs. 6.2 +/- 0.2 mL/min for normal hearts). Following 90 min global ischemia, coronary flow was increased in both groups, but the peak hyperemic response declined only in failing CMH hearts (+50 +/- 17 vs. +82 +/- 17% in normal hearts). In normal hearts, LVDP virtually recovered within 5 min of reperfusion but steadily decreased thereafter (-37 +/- 4% at 30 min). In contrast, in failing CMH hearts, LVDP significantly decreased early during reperfusion but improved over time (-19 +/- 7% at 30 min). In normal hearts, the addition of diltiazem or clentiazem to cold cardioplegic solutions resulted in improved postischemic contractile function for the duration of reperfusion (85 +/- 4% vs. only 71 +/- 6% for cardioplegia, p < 0.05). The post-ischemic increase in coronary flow was similar in all groups. In failing CMH hearts, the addition of diltiazem or clentiazem afforded no significant contractile benefit at reperfusion. In nonischemic normal hearts, infusion of diltiazem or clentiazem (10 nM) alone increased coronary flow (+6 +/- 1% for diltiazem and +24 +/- 3% for clentiazem) without significant negative inotropic or chronotropic effects. In nonischemic failing CMH hearts, infusion of diltiazem or clentiazem did not elicit cardiodepression. In contrast their coronary dilator actions reverted to vasoconstriction (diltiazem) or were significantly attenuated (clentiazem). From these experiments we can conclude that, compared with the normal heart, the failing CMH heart adapted differently to global ischemia.  相似文献   

16.
We evaluated the effects of volatile anesthetics on T-type calcium current (ICa,T) present in four different cell types using the whole cell version of the patch clamp technique. In dorsal root ganglion neurons and in two neuroendocrine cells--adrenal glomerulosa cells (AG) and thyroid C-cells--ICa,T was reversibly decreased by volatile anesthetics at clinically relevant concentrations, with isoflurane and enflurane being more potent that halothane. In AG cells, the most sensitive cell type tested, ICa,T was reduced 47%+/-4% (n = 6) by isoflurane (0.7 mM) and 56%+/-2% (n = 5) by enflurane (1.2 mM), but by only 24%+/-1% (n = 5; P < 0.05) by halothane (0.7 mM). Isoflurane caused a significant increase in the rate of deactivation of ICa,T in AG cells. In ventricular myocytes, however, ICa,T was much less sensitive to both isoflurane and halothane. The differential sensitivity of ICa,T in various cell types to the anesthetics may reflect differences in the channels expressed in these tissues or differences in the cellular intermediates involved in anesthetic action. Depression of ICa,T in neuronal cells may contribute to anesthetic action through decreases in cellular excitability. IMPLICATIONS: Using the patch clamp technique, we showed that T-type calcium channels, which promote cellular excitability, are inhibited by volatile anesthetics in neuronal and neuroendocrine cells, but not in ventricular myocytes. Inhibition of neuronal T-type channels may contribute to the mechanism of action of volatile anesthetics.  相似文献   

17.
We studied the effect of pinacidil, a potassium-channel opener, on the hemodynamic, biochemical, and ultrastructural changes in rat hearts undergoing hypothermic cardioplegia. Fifty-four male Wistar rats weighing 250 to 300 g were used. Isolated hearts were prepared for modified Langendorff circulation in the working mode using modified Krebs-Henseleit bicarbonate solution bubbled with a 95% O2 and 5% CO2 gas mixture. Eighty minutes of cardioplegia at 25 degrees C was followed by normothermic reperfusion for 30 minutes. Pinacidil, 5, 10, or 50 mumol/L added to the cardioplegic solution, did not affect heart rate, but is significantly improved the recovery of aortic flow as compared with controls (88.1% +/- 4.3 [5 mumol/L]; 83.2% +/- 8.5% [10 mumol/L]; 90.3% +/- 5.3% [50 mumol/L] compared with 55.6 +/- 4.3% [control]; p < 0.05). Administration of pinacidil during reperfusion did not further enhance the recovery of aortic flow. The dose-response curve of aortic flow to the pinacidil concentrations was flat from 5 to 50 mumol/L. However, preservation of myocardial adenosine triphosphate and calcium concentrations and mitochondrial morphology suggested that the optimal concentration of pinacidil cardioplegia is 10 mumol/L.  相似文献   

18.
BACKGROUND: Volatile agents alter inhibitory postsynaptic currents (IPSCs) at clinically relevant concentrations, an action that is thought to make an important contribution to their behavioral effects. The authors investigated the mechanisms underlying these effects by evaluating the concentration dependence of modulation by enflurane, isoflurane, and halothane of IPSCs in rat hippocampal slices. METHODS: Action potential-independent gamma-aminobutyric acid(A) IPSCs (miniature IPSCs [mIPSCs]) were recorded from CA1 pyramidal neurons. The effects on mIPSC amplitude were used to distinguish between presynaptic (altered release) and postsynaptic (altered receptor response) actions of volatile agents. The concentration dependence of blocking and prolonging actions was compared among the volatile agents to determine whether a single modulatory process could account for both effects. RESULTS: The application of volatile anesthetics prolonged the decay and reduced the amplitude of mIPSCs in a dose-dependent manner. The effects on decay time for isoflurane and enflurane could not be distinguished. However, the blocking effect of enflurane was significantly greater than that of isoflurane at all concentrations. Despite the blocking effect, the net action of these agents was enhanced inhibition, because charge transfer was always significantly greater than control. Isoflurane, and to a lesser extent enflurane and halothane, caused a picrotoxin-sensitive increase in baseline noise. Moderate increases in mIPSC frequency were also observed for all agents. CONCLUSIONS: These results show that enflurane, isoflurane, and halothane reduce IPSC amplitude through a direct postsynaptic action. Furthermore, the concentration dependence of the actions of the agents reveals a dissociation between the effects on the amplitude and the time course of IPSCs, suggesting that distinct mechanisms underlie the two actions.  相似文献   

19.
BACKGROUND: Hypoxemic developing hearts are susceptible to oxygen-mediated damage that occurs after reintroduction of molecular oxygen. This unintended hypoxemic/reoxygenation injury leads to lipid peroxidation and membrane damage and may contribute to postoperative cardiac dysfunction. Biochemical and functional status are improved by delaying reoxygenation on cardiopulmonary bypass (CPB) until cardioplegic arrest. METHODS: Six immature piglets (3 to 5 kg) without hypoxemia underwent 30 minutes of cardioplegic arrest during 1 hour of CPB. Fourteen others underwent 2 hours of hypoxemia on ventilator before reoxygenation on CPB. Reflecting our clinical routine, 9 were reoxygenated on CPB for 5 minutes followed by 30 minutes of cardioplegic arrest and 25 minutes of reperfusion. The other 5 were put on hypoxemic CPB for 5 minutes, before being reoxygenated during cardioplegic arrest for 30 minutes followed by 25 minutes of reperfusion. RESULTS: Cardioplegic arrest (no hypoxemia group) caused no functional or biochemical changes. In contrast, by preceding hypoxemia with subsequent reoxygenation on CPB (no treatment group) we found 39.5% decrease in antioxidant reserve capacity, 1,212% increase in myocardial conjugated diene production, significant increase in coronary sinus blood conjugated dienes, and an 81% reduction of left ventricular contractility, all of which were statistically significant (p < 0.05) when compared with the no hypoxemia group. Conversely, delaying reoxygenation until cardioplegic arrest (treatment group) resulted in 33.1% improvement in antioxidant reserve capacity, 91.7% less conjugated diene production, lower coronary sinus blood conjugated diene levels, and a 95% improved contractility, all of which were significant (p < 0.05) when compared with the no treatment group. CONCLUSIONS: A reoxygenation injury associated with lipid peroxidation and decreased postbypass contractility occurs in cyanotic immature hearts when reoxygenated on CPB. Delaying reoxygenation until cardioplegic arrest by starting CPB with ambient partial pressure of oxygen results in significantly improved myocardial status.  相似文献   

20.
BACKGROUND: The aim of this study was to determine whether warm reperfusion improves myocardial protection with cardiac troponin I as the criteria for evaluating the adequacy of myocardial protection. METHODS: One hundred five patients undergoing first-time elective coronary bypass surgery were randomized to one of three cardioplegic strategies of either (1) cold crystalloid cardioplegia followed by warm reperfusion, (2) cold blood cardioplegia followed by warm reperfusion, or (3) cold blood cardioplegia with no reperfusion. RESULTS: The total amount of cardiac troponin I released tended to be higher in the cold blood cardioplegia with no reperfusion group (3.9+/-5.7 microg) than in the cold blood cardioplegia followed by warm reperfusion group (2.8+/-2.7 microg) or the cold crystalloid cardioplegia followed by warm reperfusion group (2.8+/-2.2 microg), but not significantly so. Cardiac troponin I concentration did not differ for any sample in any of the three groups. CONCLUSIONS: Our study showed that the addition of warm reperfusion to cold blood cardioplegia offers no advantage in a low-risk patient group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号