首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of 195 days of pilot-scale submerged membrane bioreactor (SMBR) experiments on settled municipal wastewater. Short-term and long-term thickening experiments were performed at a constant membrane flux of 30L/(m(2)h) to determine the impact of the following mixed liquor properties: colloidal material, soluble COD, soluble microbial products, extracellular polymeric substances, and viscosity along with aeration intensity on membrane fouling at high mixed liquor suspended solids (MLSS) concentrations. The normalized permeability declined with increasing MLSS concentrations in all experiments and increasing the coarse bubble aeration intensity increased the permeability at a given MLSS concentration. Using a dynamic approach, this work demonstrates the importance of mixed liquor viscosity, which impacts the efficacy of the coarse bubble aeration, in sustaining membrane permeability. Over an extended thickening time period, a small increase in MLSS concentration and mixed liquor viscosity becomes more prevalent and leads to greater permeability decline at a given MLSS concentration.  相似文献   

2.
Membrane fouling and scouring aeration effectiveness were studied using three large pilot-scale submerged membrane bioreactors (MBRs) operated at a series of permeate fluxes, scouring aeration intensities and cyclic aeration frequencies to treat municipal wastewater. The results showed that when operated at the sustainable conditions, the MBRs had a stable reversible fouling resistance. At unsustainable conditions, the reversible fouling resistance increased exponentially as filtration progressed. For each of above two cases, the fouling ratios newly defined by Eqs. (7) and (8) were calculated from the transmembrane pressure increases to compare the relative reversible fouling rates. With the range of sustainable filtration conditions, the fouling ratios at the same reference scouring aeration intensity were found to be proportional to permeate flux. Similarly, the fouling ratios calculated with the same reference permeate flux decreased exponentially with increasing scouring aeration intensity. Moreover, the effects of scouring aeration intensity and permeate flux on the fouling ratios were found to be independent of one another. As a result, an empirical relationship was derived to relate the stable reversible fouling resistance to sustainable permeate fluxes and scouring aeration intensities. Its application was demonstrated by constructing transmembrane pressure contours overlaid with scouring aeration effectiveness contours to aid in the selection of optimal MBR filtration conditions.  相似文献   

3.
Biomass effects on oxygen transfer in membrane bioreactors   总被引:1,自引:0,他引:1  
Ten biomass samples from both municipal and industrial pilot and full scale submerged membrane bioreactors (MBRs) with mixed liquor suspended solids concentrations (MLSS) ranging from 7.2 to 30.2g L(-1) were studied at six air-flow rates (0.7, 1.3, 2.3, 3, 4.4 and 6m(3)m(-3)h(-1)). Statistical analyses were applied to identify the relative impacts of the various bulk biomass characteristics on oxygen transfer. Of the biomass characteristics studied, only solids concentration (correlated with viscosity), the carbohydrate fraction of the EPS (EPS(c)) and the chemical oxygen demand (COD) concentration of the SMP (SMP(COD)) were found to affect the oxygen transfer parameters k(L)a(20) (the oxygen transfer coefficient) and alpha-factor. The relative influence on k(L)a(20) was MLSS>aeration>EPS(c)>SMP(COD) and on alpha-factor was MLSS>SMP(COD)>EPS(c)>aeration. Both k(L)a(20) and alpha-factor increased with increasing aeration and EPS(c) and decreased with increasing MLSS and SMP(COD). MLSS was found to be the main parameter controlling the oxygen transfer.  相似文献   

4.
Two submerged anaerobic membrane bioreactors (SAnMBRs) (thermophilic vs. mesophilic) were operated for a period of 3.5 months with kraft evaporator condensate at a feed chemical oxygen demand of 10,000 mg/L. The results show that the filtration behavior of the two systems was significantly different. The filtration resistance in the thermophilic SAnMBR was about 5–10 times higher than that of the mesophilic system when operated under similar hydrodynamic conditions. Comparison of sludge properties and cake layer structure from the two systems was made to elucidate major factors governing the different filtration characteristics. There were more soluble microbial products (SMP) and biopolymer clusters (BPC) produced and a larger portion of fine flocs (<15 μm) in the thermophilic SAnMBR. Analysis of bound extracellular polymeric substances (EPS) showed that the thermophilic sludge had a higher protein/polysaccharide ratio in EPS, as compared to that in the mesophilic sludge. A series of analyses, including Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and particle size analyzer showed that the cake layer formed in the thermophilic SAnMBR contained higher levels of both organic and inorganic foulants, smaller particle sizes, and especially, a denser and more compact sludge cake structure. These results indicate that floc size, SMP, BPC, bound EPS as well as cake layer structure are the major factors governing membrane fouling in SAnMBR systems.  相似文献   

5.
Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane’s microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study.  相似文献   

6.
Recently developed polymeric membrane performance enhancer product, MPE50, was tested in various pilot‐ and full‐scale membrane bioreactors (MBRs). The Initial MPE50 dosage was determined by visual jar tests and by using various bench‐top filtration tests. Different amounts of MPE50 were dosed, and the particle size and supernatant clarity of the mixed liquor were monitored visually. Bench‐top filtration tests were also conducted. A 50% higher MPE50 dosage is recommended to be added to the pilot/full‐scale bioreactors because, based on experience, some of the soluble microbial products in the mixed liquor do not completely react with polymer during the relatively short bench‐test mixing time interval. With the addition of 400 mg/L MPE50 to a pilot MBR, the design flow was increased twofold without any significant transmembrane pressure (TMP) increase for 1 day. The control TMP surged within a few hours without MPE50. Long‐term field trials in a full‐scale plant also showed a substantial flux increase. In addition to flux enhancement, MPE50 helped to remove foam from the bioreactors and improved plant aesthetics, safety and general operating performance.  相似文献   

7.
Influence of substrate on fouling in anoxic immersed membrane bioreactors   总被引:2,自引:0,他引:2  
The influence of carbon substrate chemistry on membrane bioreactor (MBR) fouling in anoxic conditions has been evaluated. The use of a weak carboxylic acid (acetic acid) resulted in the production of large open-floc structures (up to 508microm) that were susceptible to breakage. Primary particles (d(10) and d(20) particle sizes, 5.5+/-1.3 and 15.3+/-8.2microm, respectively) and macromolecular soluble microbial products (SMPs) were generated, directly impacting on membrane fouling. The use of a primary alcohol (ethanol), on the other hand, encouraged the growth of flocs similar to activated sludge. These flocs produced low concentrations of primary particles (d(10) and d(20) particle sizes, 120.6+/-36.1 and 185.2+/-62.7microm, respectively) and high-molecular-weight SMP, and the particles had sufficient mechanical integrity to withstand shear. Consequently, the use of ethanol resulted in sufficient suppression of fouling to extend the filtration time by a factor of three. An increase in MLSS concentration did not directly impact upon fouling when operating with ethanol, primarily because of the low concentration of particulate matter produced.  相似文献   

8.
Zhihua Liang 《Water research》2010,44(11):3313-3320
Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24 h and solids retention time (SRT) of 20 d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96 mg O2/gVSS h) and autotrophic bacteria (30.37 mg O2/gVSS h) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems.  相似文献   

9.
Two parallel membrane bioreactors (2 m3 each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal wastewater under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules and conditions, the two MBRs showed different permeabilities and fouling rates. The differences were not related to the denitrification scheme. In order to find an explanation for the different membrane performances, a one-year investigation was initiated and the membrane performance as well as the operating regime and characteristics of the activated sludge were closely studied. MLSS concentrations, solid retention time, loading rates, and filtration flux were found not to be responsible for the different performance of the submerged modules. These parameters were kept identical in the two pilot plants. Instead, the non-settable fraction of the sludges (soluble and colloidal material, i.e. polysaccharides, proteins and organic colloids) was found to impact fouling and to cause the difference in membrane performance between the two MBR. This fraction was analysed by spectrophotometric and size exclusion chromatography (SEC) methods. In a second step, the origin of these substances was investigated. The results point to microbiologically produced substances such as extracellular polymeric substances (EPS) or soluble microbial products (SMP).  相似文献   

10.
霍国友  花勇刚 《山西建筑》2009,35(10):188-189
就曝气时间段DO的变化对处理效果的影响进行了实验,研究结果发现DO在3.0mg/L时COD去除率达90.7%;CASS工艺对NH3-N的去除效果随DO浓度降低而变坏;对TN的去除最佳点也是在130浓度为3.0mg/L时,去除率为73.3%;对TP的去除率在DO浓度为1.0~3.0时均能达到94%;CASS出水均能达标排放。  相似文献   

11.
Shear is used to control fouling in membrane bioreactor (MBR) systems. However, shear also influences the physicochemical and biological properties of MBR biomass. The current study examines the relationship between the level of shear and extracellular polymeric substance (EPS) production in MBRs. Two identical MBRs were operated in parallel where the biomass in one reactor was exposed to seven times greater shear forces. The concentrations of floc-associated and soluble EPS were monitored for the duration of the experiment. The stickiness of extracted floc-associated EPS from each reactor was also characterized using atomic force microscopy. A mathematical model of floc-associated and soluble EPS production was applied to quantitatively describe changes in EPS production with shear. Biomass grown in a high shear environment has lower floc-associated EPS production compared to biomass grown in a lower shear environment. This decrease in floc-associated EPS production also corresponds to a decrease in soluble EPS production, which can be explained by both the lower concentration of floc-associated EPS and the production of stickier floc-associated EPS that is more erosion resistant in the high shear reactor. This research suggests that mechanical stresses can have a significant impact on the production rates of floc-associated and soluble EPS—key parameters governing membrane fouling in MBRs.  相似文献   

12.
Effect of temperature shocks on membrane fouling in membrane bioreactors   总被引:1,自引:0,他引:1  
Temperature is known to influence the biological performance of conventional activated sludge systems. In membrane bioreactors (MBRs), temperature not only affects the bioconversion process but is also shown to have an effect on the membrane performance. Four phenomena are generally reported to explain the higher resistance for membrane filtration found at lower temperatures: (1) increased mixed liquor viscosity, reducing the shear stress generated by coarse bubbles, (2) intensified deflocculation, reducing biomass floc size and releasing EPS into the mixed liquor, (3) lower backtransport velocity and (4) reduced biodegradation of COD. Although the higher resistance at low temperatures has been reported in several papers, the relation with supernatant composition has not been investigated before. In this paper, the composition of the soluble fraction of the mixed liquor is related to membrane performance after exposing the sludge to temperature shocks. Flux step experiments were performed in an experimental system at 7, 15, and 25° Celsius with sludge that was continuously recirculated from a pilot-scale MBR. After correcting the permeate viscosity for temperature, higher membrane fouling rates were obtained for the lower temperature in combination with low fouling reversibility. The soluble fraction of the MBR mixed liquor was analysed for polysaccharides, proteins and submicron particle size distribution. At low temperature, a high polysaccharide concentration was found in the experimental system as compared to the MBR pilot. Upon decreasing the temperature of the mixed liquor, a shift was found in particle size towards smaller particles. These results show that the release of polysaccharides and/or submicron particles from sludge flocs could explain the increased membrane fouling at low temperatures.  相似文献   

13.
有机碳源及溶解氧对污水脱氮除磷的影响   总被引:4,自引:0,他引:4  
许文澧 《山西建筑》2010,36(14):179-181
介绍了有机碳源、溶解氧对常用污水生物脱氮处理工艺(A2O,Carrousel氧化沟,SBR)的影响,指出反硝化除磷、间歇曝气、低氧脱氮除磷技术在处理低碳、高氮磷城市污水方面具有良好的发展前景。  相似文献   

14.
The results of experiments on municipal wastewater primary effluent are presented for a pilot-scale submerged membrane bioreactor (SMBR). The SMBR pilot plant employed an ultrafiltration membrane with a nominal pore size of 0.035 microm and was operated at a constant membrane flux of 30 L/m(2)h. The mixed liquor suspended solids (MLSS) concentration was maintained at 8+/-2 g/L and steady-state fouling rates were determined for 10, 5, 4, 3, and 2-d MCRTs, corresponding to food-to-microorganism (F/M) ratios of 0.34, 0.55, 0.73, 0.84, and 1.41 gCOD/gVSS d, respectively. Membrane fouling rates increased as the F/M was increased. Steady-state membrane fouling rates were correlated with total soluble microbial products (SMP) concentrations. The membrane fouling rates did not correlate well with soluble COD measured on a 0.45 microm membrane filtrate of mixed liquor or with soluble COD rejection (effluent COD/soluble COD).  相似文献   

15.
The initial fouling characteristics of aerobic submerged membrane bioreactors (MBRs) were analysed under different flux conditions. Physico-chemical analyses of the mixed liquor hinted that carbohydrates were more important to membrane fouling than proteins. However, this contrasted with the characterisation of foulants on the membrane surfaces. Micro-structural analyses of the foulants on the membrane surfaces showed that the dominant foulants were different under different flux conditions. Membrane fouling occurred through a biofilm-dominated process under lower flux conditions, but the mechanism shifted towards a non-biofilm, organic fouling process as the flux was increased. In spite of the differences in fouling mechanisms, it was found that the protein fraction on the membrane surfaces, in the initial stages of MBR operations, had the greatest impact in the rise of transmembrane pressure.  相似文献   

16.
Recent efforts in the field of used water treatment and water reclamation have led to the development of a number of innovative high retention membrane bioreactor (HRMBR) systems. These systems invariably combine a high rejection membrane separation with a biological treatment. A common positive outcome of these systems is that smaller size organic contaminants are effectively retained, which facilitates their biodegradation and thus produces high quality product water. This provides the desired high level of separation, but also leads to salt accumulation with potentially adverse effects on the operations. The effects of elevated salt condition are complex, and impact on aspects covering physicochemical parameters, microbiology and membrane performance. The salt concentration factor is an important operating parameter to be optimised in the HRMBR systems. This paper aims to elucidate the important issues associated with the use of HRMBR systems under elevated salt conditions up to 50 g L−1.  相似文献   

17.
Huang L  Ju LK 《Water research》2007,41(9):1877-1884
Biological nitrogen removal via simultaneous nitrification and denitrification (SND) may be achieved in the single-tank bioreactors operated at low dissolved oxygen concentrations (DO). The continuous-stirred tank reactor (CSTR) configuration and the low DO environments employed are; however, more conducive to growth of filamentous bacteria and, thus, poor sludge settling in clarifiers. In this work, a synthetic wastewater was treated in bench-scale (approximately 6L) bioreactors under either cyclic or constant-rate aeration, at various sludge retention times (SRT) and DO. The objective was to evaluate the effects of these factors on the sludge settling indicated by sludge volume index. The cyclic aeration was carried out by alternating the aeration between a higher rate for 1h and a lower (or zero) rate for 30 min. In different experiments, the DO during the period of higher aeration (HDO) was 0.4, 0.6, 0.8, or 2.0 mg/L and the DO during lower aeration (LDO) was 0.0 or 0.2mg/L. The sludge established under the cyclic aeration was found to settle better than that under constant-rate aeration. Shortening SRT also improved the sludge settling significantly. NAD(P)H fluorescence profiles in these bioreactors were monitored using an online fluorometer. A procedure was developed to quantitatively describe the metabolic state of sludge's heterotrophic population on a 0-1 scale using the fluorescence profile, with "0" corresponding to the fully anoxic-denitrifying state and "1" to the fully aerobic state.  相似文献   

18.
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.  相似文献   

19.
The effect of dissolved oxygen concentration on the rate of nitrification has been investigated by a number of researchers using both pure and mixed cultures, and cultures found in wastewater treatment systems. The maximum growth rate of both nitrification reactions are reported to be affected by dissolved oxygen concentration over the range of 0.3 mg l−1 to as much as 4.0 mg l−1. In some instances, it has been reported that a dissolved oxygen concentration in excess of 4.0 mg l−1 is required to achieve maximum nitrification rates, while other investigators have found that only 0.5 to 1.0 mg l−1 is required.It has been proposed that several factors are responsible for the wide range of reported nitrification rates with varying dissolved oxygen concentrations. Among these factors are the effects of oxygen diffusion in flocs, variation between measured results due to steady-state and dynamic measuring techniques, and double-substrate limited kinetics. This paper reviews the nitrification literature with respect to the effects of dissolved oxygen concentration, and shows that double-substrate limiting kinetics could account for the variation in the reported results.  相似文献   

20.
This work aims to characterise the impact of hydrodynamics on sludge properties and consequently on fouling mechanisms in side-stream membrane bioreactors (MBRs). Two side-stream processes which generate very different shear stresses are compared, without filtration. This operating mode permits specific quantification of the impact of the external loop (and of induced shear stress) on floc structure/morphology, supernatant quality and fouling propensity. The study shows that low constraints (7 × 10−3 Pa) generated on submerged side-stream hollow fibre modules have no significant impact on sludge properties. In contrast, high shear stresses (72 Pa) associated with a crossflow configuration induce very significant modifications of the mixed liquor which increases its fouling propensity (measured in a standard filtration cell). A theoretical explanation of the role of turbulence on the floc size distribution is given. Based on a Kolmogorov microscale calculation, it seems possible to predict the mean floc size reached in both filtration systems, for a given shear stress intensity. Disaggregation is characterised by a two-step kinetic: first a short-term breakage attributed to fragmentation and loss of weak strength bonds, and secondly a longer-term breakage probably due to erosion phenomena and removal of high strength bonds. Only the second step induces a significant release and an accumulation of soluble protein-like substances. Soluble organic matter strongly enhances the fouling propensity of the mixed liquor. This seems to be amplified by the concentration of protein-like substances. The importance of considering the protein and carbohydrate content as well as floc size is also pointed out in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号