首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以一台涡轮增压六缸柴油机改造的发动机为试验对象,研究引燃柴油喷油正时对LNG-柴油双燃料发动机燃烧特性的影响。研究了不同喷油正时下的双燃料发动机的缸内压力、压力升高率、缸内温度、燃烧放热规律、循环变动等参数。研究结果表明:引燃柴油喷油正时对双燃料发动机燃烧特性影响很大。随引燃柴油喷油正时的增大,最高缸内压力、最高压力升高率、最大燃烧温度和最大瞬时放热率先升高后降低且所对应的曲轴转角减小;峰值压力循环变动系数先降低后增大,峰值压力升高率循环变动系数降低。  相似文献   

2.
对天然气替代率、引燃柴油喷油时刻和中冷后进气温度等燃烧系统参数对增压中冷柴油—天然气双燃料发动机燃烧特性的影响进行了实验研究。研究结果表明:增压中冷柴油—天然气双燃料发动机的燃烧放热速率比纯柴油快,引燃柴油的着火时刻和缸内燃料空燃比值决定着双燃料发动机的燃烧特性,即着火时刻在上止点前且空燃比值较小时,其燃烧接近于定容燃烧过程,随着天然气替代率的升高,缸内最大爆发压力和最高燃烧温度升高;而着火时刻在上止点后且空燃比值较大时,其燃烧接近于等压燃烧过程,随着天然气替代率升高,缸内最大爆发压力和最高燃烧温度降低。最大爆发压力、最高燃烧放热率和最高燃烧温度随引燃柴油喷油提前角的增大而升高;而随着进气温度升高,最大爆发压力和缸内温度增大。  相似文献   

3.
以柴油引燃天然气发动机为研究对象,针对柴油引燃油的扩散燃烧和天然气气体燃料的均质预混燃烧的特点,分别建立了引燃油多区燃烧模型和基于分形理论的预混天然气气体燃料燃烧模型.在试验验证所建模型的基础上,分析了引燃油量、喷油提前角和发动机转速对柴油引燃天然气发动机性能的影响.研究表明,适当增加引燃油量和减小喷油提前角可以降低柴油引燃天然气发动机的最大缸内压力升高率,从而有利于遏制柴油引燃天然气发动机高负荷时的爆震倾向.  相似文献   

4.
唐努  郑翱昱  刘开敏  钱波 《柴油机》2015,37(4):6-10
针对双燃料发动机的特点介绍了电控双燃料系统的原理;并对所研究的双燃料发动机的失效模式及效应进行了分析。性能试验表明:在不对原柴油机喷油角度、压缩比等参数进行任何改动,只增加燃气供应系统和电控双燃料系统的情况下,在75%负荷下天然气的替代率达到83%,经济性好;同时,排放较纯柴油有较大的改善;发动机的排温、最高燃烧压力及调速性能与柴油机的相近。  相似文献   

5.
基于自主研发的第三代并行式柴油/天然气双燃料发动机电控系统,利用FIRE软件建立柴油/天然气双燃料发动机柴油喷射系统的多次喷射模型。同时,通过进气压力控制过量空气系数,实现柴油/天然气双燃料发动机稀薄燃烧方式。针对高负荷工况,研究了多次喷射策略和稀薄燃烧方式对双燃料发动机最大压力升高率及NOx排放的影响。结果表明:发动机工作在高负荷及柴油替代率为80%时,采用双燃料稀薄燃烧方式能使NOx排放降低,但最大压力升高率仍可能超过安全临界值1MPa/(°)。采用合适的预喷射量与预喷射时刻能降低最大压力升高率。通过多次喷射和稀薄燃烧方式相结合的燃烧策略对缸内燃烧方式进行组织,可以实现双燃料发动机高替代率燃烧,并使高负荷时NOx排放达到或者低于国Ⅴ标准限值。  相似文献   

6.
以4102型柴油机为基础机,开发天然气/柴油双燃料发动机,试验研究引燃油量、喷油提前角对发动机排放和经济性影响,以及双燃料发动机与原柴油机性能和排放的比较。  相似文献   

7.
柴油、天然气双燃料发动机的燃烧特性分析   总被引:11,自引:2,他引:9  
研究了柴油,天然气双燃料发动机的燃烧特性,并着重分析了引燃柴油供给系统参数对双燃料发支持性的影响。以试验为基础,首先简要比较了柴油,天然气双燃料发动机与柴油机的燃烧特性,并对比了负荷对双燃料发动机燃烧特性的影响。然后分析了最小循环喷油量,引燃柴油量,引燃油喷射压力,喷嘴参数及供油提前角等引燃柴油供给系统参数对最高爆发压力,燃烧放热率,着火开始时间、累积燃烧放热率等柴油,天然气双燃料发动机燃烧特性的  相似文献   

8.
基于CONVERGE软件建立了预燃室式柴油/天然气双燃料船用二冲程发动机的三维计算流体动力学(computational fluid dynamics,CFD)模型,研究了压缩比、引燃柴油质量和喷射压力、引燃柴油喷射角度对燃烧过程的影响,探索了提高柴油/天然气双燃料船用发动机热效率的燃烧策略。结果表明:提高压缩比可以提高缸内的最大爆发压力,从而有效提高热效率,但受发动机机械强度的限制,压缩比为12.5时可以获得较佳的效果;适当增大引燃油量和喷射压力,可以使射流火焰的着火点增加,点火能量增强,对热效率略有改善;调节引燃柴油的喷射角度,将引燃油喷射到CH4浓度较高区域可以获得更好的引燃效果,降低指示燃料消耗率;提高压缩比至12.5结合推迟喷油策略对热效率的改善效果更为明显。  相似文献   

9.
双燃料发动机燃烧模型的研究与应用   总被引:4,自引:1,他引:3  
以天然气为主要燃料、少量柴油机为引燃油的双燃料发动机为研究对象,建立模型,它包括热力学、经学反应动力学、引燃油多区传热和燃烧模型。应用该模型预算了双燃料发动机的燃烧过程,分析了运行和结构参数对双燃料发动机性能和排放的影响。  相似文献   

10.
天然气/柴油双燃料发动机燃烧过程的模拟计算   总被引:1,自引:0,他引:1  
详细介绍了天然气/柴油双燃料发动机的二维数学模型,并对一台单缸双燃料发动机燃烧过程进行了模拟计算,将计算结果与实验结果对比分析发现,该模型的计算结果与试验数据有良好的一致性。  相似文献   

11.
不同喷射时刻缸内直喷天然气燃烧特性   总被引:4,自引:0,他引:4  
利用快速压缩装置研究不同喷射沓刻缸内直喷天然气燃烧特性。结果表明,天然气直喷燃烧可实现快速燃烧,缩短喷射时刻与点火时刻的时间差可明显缩短燃烧期。与均匀混合气燃烧相比,碳氢的排放增加,缩短喷射时刻与点火时刻的时间差可达到均匀混合气燃烧时相同的排放量。在很宽的当量比范围内,NOx增加,而CO仍维持很低数值,且不受喷射时刻的影响,直喷天然气燃烧可实现较高的压力升高值,且其数值不受喷射时刻的影响,所达到的高燃烧效率也不受喷射时刻的影响。  相似文献   

12.
《能源学会志》2014,87(4):341-353
Using exhaust top dead center injection (ETCI) mode to realize homogeneous charge compression ignition (HCCI) combustion would cause fuel wall wetting and combustion efficiency reduction, and there is no effective one-dimension simulation model to calculate and analyze the fuel wall wetting and evaporation process. In the research, a new type of integrated model is developed for the new application, HCCI combustion simulation based on ETCI mode. The model includes the following sub-models: fuel injection model, impingement model, film evaporation model, and combustion model. The improved Hiroyasu model and the Bai's model are coupled with homogenous combustion model and film evaporation model to calculate impingement fuel evaporation. The developed model is validated by experiment in a single cylinder diesel engine with ETCI combustion mode. The simulation and experimental results show that, film evaporation is mainly related to cylinder gas temperature and wall temperature, and there is an evident two stage heating process. The cumulate heat release rate is linear with exhaust valve closing (EVC) timing and wall temperature. The burned fuel fraction increases by 6 percent as the EVC timing advances by every 10 °CA, and increases by 4 percent as the wall temperature increases by every 50 K. The cumulate heat release rate decreases with the increase of boosting pressure, and the higher the boosting pressure, the smaller the decrease degree of cumulate heat release rate is.  相似文献   

13.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.  相似文献   

14.
An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted. The results show that ignition timing has a significant influence on engine performance, combustion and emissions. The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines. The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies. The maximum cylinder gas pressure, maximum mean gas temperature, maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing. However, these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing. The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing. In the lean combustion condition, the exhaust CO does not vary much with ignition timing. At the same ignition timing, the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition. The exhaust NOx increases with the advancing of ignition timing and the behavior tends to be more obvious at large ignition advance angle. The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%. __________ Translated from Transactions of CSICE, 2006, 24(5): 394–401 [译自:内燃机学报]  相似文献   

15.
天然气/柴油双燃料发动机燃料喷射及着火特性   总被引:1,自引:0,他引:1  
基于计算流体动力学(CFD)软件CONVERGE模拟了缸内高压直喷式柴油微引燃液化天然气(LNG)发动机的燃料喷射混合以及着火过程,校核和验证了湍流模型对模拟结果的影响,分析了天然气喷射正时、天然气喷射持续期及柴油与天然气射流中心轴线的夹角对缸内柴油和天然气射流发展、混合和着火的影响.结果表明:Smagorinsky大...  相似文献   

16.
In traffic transportation, the use of low-carbon fuels is the key to being carbon-neutral. Hydrogen-enhanced natural gas gets more and more attention, but practical engines fueled with it often suffer from low engine power output. In this study, the inner mechanism of hydrogen direct injection on methane combustion was optically studied based on a dual-fuel supply system. Simultaneous pressure acquisition and high-speed direct photography were used to analyze engine performance and flame characteristics. The results show that lean combustion can improve methane engine's thermal efficiency, but is limited by cyclic variations under high excess air coefficient conditions. Hydrogen addition mainly acts as an ignition promoter for methane lean combustion, as a result, the lean combustion limit and thermal efficiency can be improved. As for hydrogen injection timing, late injection can increase the in-cylinder turbulence intensity but also the inhomogeneity, so a suitable injection timing is needed for improving the engine's performance. Besides, late hydrogen injection is more effective under lean conditions because of the reduced mixture inhomogeneity. The current study shall give some insights into the controlling strategies for natural gas/hydrogen engines.  相似文献   

17.
The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.  相似文献   

18.
利用CONVERGE软件基于L23/30DF型船用天然气发动机建立了双天然气喷嘴、双引燃柴油喷嘴的直喷天然气发动机的缸内燃烧过程的CFD计算模型,计算了不同的柴油和天然气喷射时刻和间隔下发动机缸内燃烧和排放过程.结果 表明:引燃柴油的喷射时刻及其与天然气喷射时刻的间隔,对直喷式天然气发动机燃烧和排放性能有重要影响.当喷...  相似文献   

19.
Water direct injection into the cylinder is one of effective ways to suppress the combustion rate and knocking combustion in turbocharged SI engine. In this study, a detailed one-dimensional model coupled with the water direct injection was built by using the GT-Power according to the real tested hydrogen-enriched lean-burn natural gas (NG) SI engine, and validated against the experimental data. Then, a series of cases with various water injection quantity and injection timing were comprehensively investigated on the thermodynamics, combustion and emissions characteristics of the NGSI engine. The impact of the thermo-physical of the water were discussed in detailed by sweeping various water injection quantity and water injection timing. The results indicated that peak combustion pressure and peak heat release rate decreased with the increasing the water injection quantity. In addition, the 50% combustion location and peak combustion pressure location were retarded with the increasing the water injection quantity. As for the water injection timing, the peak combustion pressure and peak combustion temperature were slightly decreased with retarding the water injection timing. Apart from that, the indicated thermal efficiency decreased 4.03% and the equivalent fuel consumption increased 3.56% with injecting 60 mg water into the cylinder compared the case without water injection. Furthermore, the indicated thermal efficiency decreased 4.68% and the equivalent fuel consumption increased 4.66% by sweeping the water injection timing from the 150 CA to 50 CA before top dead center. However, the volumetric efficiency slightly ascended with increasing the water injection quantity and retarding the water injection timing. Finally, the NOx emissions declined with increasing the water injection quantity and retarding the water injection timing. However, CO emission and unburned HC emissions increased with increasing the water injection quantity and retarding the water injection timing. The main aim of this paper is expected to provide a comprehensively assessment of the thermo-physical of water on the thermodynamics, combustion, and emissions of the hydrogen enriched NGSI engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号