首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An asynchronous pipeline style is introduced for high-speed applications, called MOUSETRAP. The pipeline uses standard transparent latches and static logic in its datapath, and small latch controllers consisting of only a single gate per pipeline stage. This simple structure is combined with an efficient and highly-concurrent event-driven protocol between adjacent stages. Post-layout SPICE simulations of a ten-stage pipeline with a 4-bit wide datapath indicate throughputs of 2.1-2.4 GHz in a 0.18-mum TSMC CMOS process. Similar results were obtained when the datapath width was extended to 16 bits. This performance is competitive even with that of wave pipelines, without the accompanying problems of complex timing and much design effort. Additionally, the new pipeline gracefully and robustly adapts to variable speed environments. The pipeline stages are extended to fork and join structures, to handle more complex system architectures.  相似文献   

2.
沈易  刘术彬  朱樟明 《半导体学报》2016,37(6):065001-5
本文在0.18μm CMOS工艺下,实现了一款10位50MS/s两级逐次逼近流水线混合型模数转换器(pipeline SAR ADC)。其由基于逐次逼近的增益模数单元和逐次逼近ADC组成,并采用1位冗余位放宽了子模数转换器的比较误差。通过采用逐次逼近结构,增益减半MDAC技术,动态比较器及动态逐次逼近控制逻辑,降低了模数转换器的功耗和面积。流片测试结果表明,在1.8V电源电压,50MS/s采样速率下,信噪失真比(SFDR)和功耗分别为56.04dB和5mV。  相似文献   

3.
In this paper, we present a novel, high throughput field-programmable gate array (FPGA) architecture, PITIA, which combines the high-performance of application specific integrated circuits (ASICs) and the flexibility afforded by the reconfigurability of FPGAs. The new architecture, which targets datapath circuits, uses the concepts of wave steering and pipelined interconnects. We discuss the FPGA architecture and show results for performance, power consumption, clock network performance, and routability. Results for some commonly used datapath designs are encouraging with throughputs in the neighborhood of 625MHz in 0.25-/spl mu/m 2.5-V CMOS technology. Results for random benchmark circuits are also shown. We characterize designs according to their Rent's exponents and argue that designs with predominantly local interconnects are the best fit in PITIA. We also show that as technology scales down toward deep submicron, PITIA shows an increasing throughput performance.  相似文献   

4.
提出一种基于FPGA的专用处理器设计.它是用于高级加密标准的超小面积设计,支持密钥扩展(现在设计为128位密钥),加密和解密.这个设计采用了完全的8位数据路径宽度,创新的字节替换电路和乘累加器结构,在最小规模的Xilinx Spartan II FPGA芯片XC2S15上实现了一个高级加密标准AES的专用处理器,使用了不到60%的资源.当时钟为70MHz时,可以达到平均加密解密吞吐量2.1Mb/s.主要应用在把低资源占用,低功耗作优先考虑的场合.  相似文献   

5.
This article presents a new approach for improving the power-delay performance of subthreshold source-couple logic (STSCL) circuits. Using a simple two-phase pipelining technique, it is possible to increase the activity rate of STSCL gates with negligible additional cost, and hence reduce the total system energy consumption per operation. In the proposed pipelined topology, each STSCL gate is followed by a simple cross-coupled differential pair operating as a state keeper with a very low power consumption and small area overhead. Measurement results on a 32-bit pipelined adder chain fabricated with CMOS technology show that the proposed approach can achieve a significant reduction in power-delay product (PDP) down to 5 fJ/stage.  相似文献   

6.
A time-shifted correlated double sampling (CDS) technique is proposed in the design of a 10-bit 100-MS/s pipelined ADC. This technique significantly reduces the finite opamp gain error without compromising the conversion speed, allowing the active opamp blocks to be replaced by simple cascoded CMOS inverters. Both high-speed and low-power operation is achieved without compromising the accuracy requirement. An efficient common-mode voltage control is introduced for pseudodifferential architecture which can further reduce power consumption. Fabricated in a 0.18-/spl mu/m CMOS process, the prototype 10-bit pipelined ADC occupies 2.5 mm/sup 2/ of active die area. With 1-MHz input signal, it achieves 65-dB SFDR and 54-dB SNDR at 100MS/s. For 99-MHz input signal, the SFDR and SNDR are 63 and 51 dB, respectively. The total power consumption is 67 mW at 1.8-V supply, of which analog portion consumes 45 mW without any opamp current scaling down the pipeline.  相似文献   

7.
A high speed and low power 8-bit carry-lookahead adder using two-phase modified dual-threshold voltage (dual-Vt) domino logic blocks which are arranged in a programmable logical array-like design style with pipelining is presented. The modified domino logic circuits employ dual-transistors and reversed bulk-source biases for reducing subthreshold leakage current when advanced deep submicrometer process is used. Moreover, an nMOS transistor is inserted in the discharging path of the output inverter such that the modified domino logic can be properly applied in a pipeline structure to reduce the power consumption. The addition of two 8-bit binary operands is executed in two cycles. Not only is it proven to be also suitable for long adders, the dynamic power consumption is also drastically reduced by more than 10% by the measurement results on silicon.  相似文献   

8.
文章通过对32位定点DSP的体系结构及其设计方法的研究,重点阐述了32位定点DSP中CPU包括ALU、MPY、ARAU、流水线、指令系统和总线接口等关键逻辑部件工作原理,对各个逻辑部件的设计思路和实现方法进行了分析描述。采用基于标准单元正向设计方法,设计了一款32位指令集的定点DSP电路,该电路采用哈佛总线结构,可以在单周期内实现16×16位有符号整数乘法、32位累加和32位数据的算术逻辑运算,处理精度高。该电路采用0.5μm 1P3M CMOS工艺流片,集成度7万门,工作频率可达36 MHz,动态功耗594 mW。  相似文献   

9.
A 4-bit, general-purpose, two's complement serial pipeline multiplier chip has been designed and fabricated in the bipolar GIMIC-O process. The chip can provide the following functions in 24-pin dual-in-line packages: (1) two's complement/two's complement 4-bit serial pipeline multiplier with programmable coefficients, (2) sign magnitude/two's complement 4-bit serial pipeline multiplier with programmable coefficients, (3) 5-bit dynamically programmable adder/subtractor, (4) 2/SUP -K/ scaler; (5) overflow corrector. Packages can be cascaded to provide functions of length greater than 4 bits. Nonsaturating circuit techniques, emitter function logic combined with current-steering trees, are effectively utilized to make high-performance, low-power circuits using a simple bipolar technology. The multiplier circuitry is compatible at inputs and outputs with standard emitter coupled logic and uses a standard -5.2/spl plusmn/10 percent power supply. Fully programmable multiplication at clock rates greater than 20 MHz is achieved with a power consumption of 37.5 mW/bit.  相似文献   

10.
Resonant tunneling devices and circuit architectures based on monostable-bistable transition logic elements (MOBILEs) are promising candidates for future nanoscale integration. In this paper, the design of clocked MOBILE-type threshold logic gates and their application to arithmetic circuit components is investigated. The gates are composed of monolithically integrated resonant tunneling diodes and heterostructure field-effect transistors. Experimental results are presented for a programmable NAND/NOR gate. Design related aspects such as the impact of lateral device scaling on the circuit performance and a bit-level pipelined operation using a four phase clocking scheme are discussed. The increased computational functionality of threshold logic gates is exploited in two full adder designs having a minimal logic depth of two circuit stages. Due to the self-latching behavior the adder designs are ideally suited for an application in a bit-level pipelined ripple carry adder. To improve the speed a novel pipelined carry lookahead addition scheme for this logic family is proposed  相似文献   

11.
为了有效地提升异步零协议逻辑(NCL)流水线的吞吐量,该文提出一种多阈值并行完备流水线。采用独特的半静态零协议阈值门建立异步组合逻辑,使数据串行传输的同时每级流水线数据处理和完备检测并行进行,以串并结合的工作方式提升吞吐量。同时新阈值门的使用降低了流水线空周期时的静态功耗。基于SMIC 0.18μm标准CMOS工艺对所提出的流水线进行了分析测试。与现有流水线比较显示,当组合逻辑为四位串行进位全加器时,新的流水线吞吐量提升62.8%,静态功耗减少40.5%,可用于高速低功耗的异步电路设计。  相似文献   

12.
The quantum of power consumption in wireless sensor nodes plays a vital role in power management since more number of functional elements are integrated in a smaller space and operated at very high frequencies. In addition, the variations in the power consumption pave the way for power analysis attacks in which the attacker gains control of the secret parameters involved in the cryptographic implementation embedded in the wireless sensor nodes. Hence, a strong countermeasure is required to provide adequate security in these systems. Traditional digital logic gates are used to build the circuits in wireless sensor nodes and the primary reason for its power consumption is the absence of reversibility property in those gates. These irreversible logic gates consume power as heat due to the loss of per bit information. In order to minimize the power consumption and in turn to circumvent the issues related to power analysis attacks, reversible logic gates can be used in wireless sensor nodes. This shifts the focus from power-hungry irreversible gates to potentially powerful circuits based on controllable quantum systems. Reversible logic gates theoretically consume zero power and have accurate quantum circuit model for practical realization such as quantum computers and implementations based on quantum dot cellular automata. One of the key components in wireless sensor nodes is the cryptographic algorithm implementation which is used to secure the information collected by the sensor nodes. In this work, a novel reversible gate design of 128-bit Advanced Encryption Standard (AES) cryptographic algorithm is presented. The complete structure of AES algorithm is designed by using combinational logic circuits and further they are mapped to reversible logic circuits. The proposed architectures make use of Toffoli family of reversible gates. The performance metrics such as gate count and quantum cost of the proposed designs are rigorously analyzed with respect to the existing designs and are properly tabulated. Our proposed reversible design of AES algorithm shows considerable improvements in the performance metrics when compared to existing designs.  相似文献   

13.
A 10-bit 60-MS/s low-power CMOS pipelined analog-to-digital converter (ADC) is proposed. At the front-end, a timing-skew-insensitive double-sampled Miller-capacitance-based sample-and-hold circuit is employed to enhance the dynamic performance of the pipelined ADC. Bootstrapped switch achieves rail-to-rail signal swing at low-voltage power supply. Employing double sampling and bias current scaling techniques, very competitive power consumption can be achieved. The prototype chips have been fabricated and experimental results confirm the feasibility of this new technique.  相似文献   

14.
15.
This paper presents a pipelined analog to digital converter (ADC) with reconfigurable resolution and sampling rate for biomedical applications. Significant power saving is achieved by turning off the sample-and-hold stage and the first two pipeline stages of the ADC instead of turning off the last two stages. The reconfiguration scheme allows having three modes of operation with variable resolutions and sampling rates. Reconfigurable operational transconductance amplifiers and an interference elimination technique have been employed to optimize power-speed-accuracy performance in biomedical instrumentation. The proposed ADC exhibits a 56.9 dB SNDR with 35.4 mW power consumption in 10-bit, 40 MS/s mode and 49.2 dB SNDR with only 7.9 mW power consumption in 8-bit, 2.5 MS/s mode. The area of the core layout is 1.9 mm2 in a 0.35 μm bulk-CMOS process.  相似文献   

16.
In this paper, a number of 4-bit, 8-operation arithmetic logic units (ALUs) are designed using the delay-insensitive NULL convention logic paradigm, and are characterized in terms of speed and area. Both dual-rail and quad-rail, pipelined and non-pipelined versions are developed, and the tradeoffs and design considerations for each are discussed. Comparing the various architectures shows that the fastest dual-rail and quad-rail ALUs achieve average speedups of 1.72 and 1.59, respectively, over their non-pipelined counterparts, while requiring 133% and 119% more area, respectively. Overall, the dual-rail designs are both faster and require less area than their respective quad-rail counterparts; however, the quad-rail versions are expected to consume less power.  相似文献   

17.

该文提出一种用于电荷域流水线模数转换器(ADC)的高精度输入共模电平不敏感采样保持前端电路。该采样保持电路可对电荷域流水线ADC中由输入共模电平误差引起的共模电荷误差进行补偿。所提出的高精度输入共模电平不敏感采样保持电路被运用于一款14位210 MS/s电荷域ADC中,并在1P6M 0.18 μm CMOS工艺下实现。测试结果显示,该14位ADC电路在210 MS/s条件下对于30.1 MHz单音正弦输入信号得到的无杂散动态范围为85.4 dBc,信噪比为71.5 dBFS,而ADC内核功耗仅为205 mW,面积为3.2 mm2

  相似文献   

18.
Wave steering is a unified logic and physical synthesis scheme that algorithmically generates high-throughput circuits with fast turn-around times. Binary decision diagram (BDD)-type structures are altered to satisfy certain electrical constraints, embedded in silicon with pass transistor logic (PTL), and pipelined to very fine granularity using a novel two-phase clocking scheme. This direct PTL mapping of a logic representation provides good electrical estimations to a front-end tool like the logic synthesizer at an early phase of the design cycle. We apply our wave steering technique to high throughput computation-intensive datapath combinational circuits. We achieve an average speedup of 4.2 times compared to standard cell (SC) implementations of high performance arithmetic circuits at the cost of only about 76% average increase in area. The results look extremely encouraging; all the more so, considering that we also achieve an average reduction of 27% in latency and 15% in power compared to SC circuits.  相似文献   

19.
A design is presented for an 8-bit/spl times/8-bit parallel pipelined multiplier for high speed digital signal-processing applications. The multiplier is pipelined at the bit level. The first version of this multiplier has been fabricated in 2.5-/spl mu/m CMOS technology. It has been tested at multiplication rates up to 70 MHz with a power dissipation of less than 250 mW. Clock skew, a major problem encountered in high-speed pipelined architectures, is overcome by the use of a balanced clock distribution network all on metal, and by proper use of clock buffers. These issues and the timing simulation of the pipeline design are discussed in detail. Possible extensions and improvements for achieving higher performance levels are discussed. The conversion of the two-phase clocking scheme to an inherently single-phase clock approach is one possible improvement. A design using this approach has been simulated at 75 MHz and is currently being fabricated.  相似文献   

20.
In this paper, we characterize the performance of datapath architectures of the Advanced Encryption Standard (AES). These architectures are parameterized by a datapath width of 8, 16, 32, 64, or 128 bits and, for the 128-bit width, an unrolling factor of 1, 2, 5 or 10. Composite field S-boxes are adopted for all the architectures and shift registers based ShiftRows and MixColumns components are used for architectures with datapath widths of less than 128 bits. Their performance in terms of area, peak power and average energy is benchmarked using a 90-nm standard cell CMOS technology under a variety of throughput requirements. Through this characterization, the performance trade-offs affected by the architecture parameters are extensively explored. The parameters leading to the best performance are identified. It is found that the 8-bit width datapath, which is conventionally adopted for resource efficient purposes, has the worst energy efficiency and does not result in the minimal peak power among the architectures. As well, the 16, 32 and 64-bit width AES datapath architectures are newly considered or represent improvements over previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号