首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
2519铝合金热变形流变行为   总被引:23,自引:11,他引:23  
采用Gleeble-1500热模拟机进行高温等温压缩实验,研究了2519铝合金在变形温度为300~450℃、应变速率为0.01~10 s-1条件下的流变变形行为.结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,在应变速率ε<10 s-1条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复的特征;而在ε=10 s-1,t≥350℃的变形条件下,合金发生了局部动态再结晶.可用包含Arrhenius项的Zener-Hollomon参数描述2519铝合金高温塑性变形时的流变行为.  相似文献   

2.
Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图   总被引:2,自引:0,他引:2  
在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1.  相似文献   

3.
7055铝合金高温流变应力特征及本构方程   总被引:2,自引:1,他引:1  
采用Gleeble-1500热模拟机进行高温等温压缩试验, 研究了7055合金在变形温度为300~450 ℃、应变速率为10-2~10 s-1条件下的流变应力特征.结果表明, 该合金为正应变速率敏感材料,流变应力随应变速率的增加而增大,随温度升高而减小.流变应力开始随应变增加而增大,达到峰值后趋于平稳, 表现出动态回复的特征.通过线性回归分析计算出该材料的应变硬化指数n为5.776 83以及变形激活能Q为146.400 7 kJ/mol, 获得了该合金高温条件下的流变应力本构方程.  相似文献   

4.
采用Gleeble-3500热模拟实验机,对AZ31镁合金在变形温度为523~723 K、应变速率为0.01~10.00 s-1、最大变形程度为60%的条件下进行热压缩实验.结果表明,流变应力随应变的增加而显著增大,到达峰值后逐渐降低并趋于稳态,变形呈明显的动态再结晶特征.变形温度和应变速率对流变应力影响显著,本文采用包含Arrheniues项的本构方程来描述AZ31镁合金的高温变形行为.  相似文献   

5.
采用Gleeble-1500D热模拟机研究了7055铝合金在应变速率为0.01、0.1和1s-1、变形温度为300~450℃,最大真应变为0.7条件下的高温塑性变形行为,分析了合金流变应力与应变速率、变形温度之间的关系,计算了合金高温塑性变形时的变形激活能,并观察了合金变形过程中显微组织变化情况。结果表明:合金在热变形过程中流变应力随温度的升高而减小,随应变速率的增加而增大,7055铝合金的高温塑性变形行为可以用包含Zener-Hollomon参数的流变应力方程进行描述。该合金在实验条件范围内热变形以动态回复为主要软化机制并伴随极少量的再结晶发生。  相似文献   

6.
易切削Cu-Se-Bi合金的高温塑性变形行为   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟机研究了Cu-Se-Bi合金在变形温度为550~700 ℃,应变速率为0.01 ~10.00 s-1条件下的流变应力变化规律和微观组织,并根据试验数据确定了本构方程.结果表明,Cu-Se-Bi合金高温动态再结晶明显降低合金的流变应力,变形量在15%~80%时,流变应力趋于稳定;当应变速率为2.50、10.00 s-1时,流变应力出现波动,温度为700 ℃、应变速率为10.00 s-1、应变在0.09~0.15时应力波动值可达12 MPa;变形量越大,动态再结晶越明显;应变速率越小,晶粒越细小;当温度为600 ℃、变形量为60%、应变速率为0.01 s-1时,平均晶粒尺寸为8.5 μm.  相似文献   

7.
01570铝合金热压缩变形的流变应力本构方程   总被引:3,自引:1,他引:2  
在Gleeble-1500热模拟机上对01570铝合金进行等温热压缩实验,变形温度为300~450℃,应变速率为0.001~1 s-1,研究其热压缩变形的流变应力行为.结果表明:01570铝合金真应力-应变曲线在变形温度为300 ℃,应变速率为0.01~1 s-1的条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征;而在其他条件下,应力达到峰值后随应变的增加而逐渐下降,表现出动态再结晶特征.在用Arrhenius方程描述01570铝合金热变形行为时,其变形激活能Q为152.33 kJ·mol-1.  相似文献   

8.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.4Cr合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究。结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大;在应变温度为700,800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征;从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程;合金动态再结晶的显微组织强烈受到变形温度的影响。  相似文献   

9.
7A85铝合金热压缩流变行为与本构方程研究   总被引:1,自引:0,他引:1  
通过在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了7A85铝合金在变形温度为250~450℃、应变速率为0.001~1 s-1条件下的高温流变行为。研究表明,7A85铝合金在热压缩过程中发生了明显的动态回复与动态再结晶;变形抗力随温度的降低而增加,当温度低于300℃时变形抗力增加明显,同时变形抗力随应变速率的增大而增大;应变速率和流变应力之间满足指数关系,温度和流变应力之间满足Arrhenius方程;采用线性回归方法获得了7A85铝合金高温条件下流变应力的本构方程。  相似文献   

10.
采用圆柱体在Gleeble-1500热模拟机上进行热压缩实验,对一种新型水平连铸Al-Mn-Si-X合金热变形流变应力行为进行研究,变形温度为350℃~500℃,应变速率为0.01s-1~10s-1。结果表明,流变应力先随应变的增大而增大,达到峰值后则逐渐减小并趋于平稳,表现出流变软化特征;而应力峰值是随着温度的升高而减小,随应变速率的增大而增大。应用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金热压缩变形流变应力,其变形激活能Q=159.2kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号