首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 73 毫秒
1.
基于低秩子空间恢复的联合稀疏表示人脸识别算法   总被引:4,自引:0,他引:4       下载免费PDF全文
胡正平  李静 《电子学报》2013,41(5):987-991
 针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵 D ,将矩阵 D 分解为低秩矩阵 A 和稀疏误差矩阵 E ,其中 A 表示某类个体的'干净’人脸,严格遵循子空间结构, E 表示由阴影、反光、遮挡等引起的误差项,这些误差项破坏了人脸图像的低秩结构.然后用低秩矩阵 A 和误差矩阵 E 构造训练字典,将测试样本表示为低秩矩阵 A 和误差矩阵 E 的联合稀疏线性组合,利用这两部分的稀疏逼近计算残差,进行分类判别.实验证明该稀疏表示识别算法有效,识别精度得到了有效提高.  相似文献   

2.
该文针对现有的基于低秩表示的子空间聚类算法使用核范数来代替秩函数,不能有效地估计矩阵的秩和对高斯噪声敏感的缺陷,提出一种改进的算法,旨在提高算法准确率的同时,保持其在高斯噪声下的稳定性。在构建目标函数时,使用系数矩阵的核范数和Forbenius范数作为正则项,对系数矩阵的奇异值进行强凸的正则化后,采用非精确的增广拉格朗日乘子方法求解,最后对求得的系数矩阵进行后处理得到亲和矩阵,并采用经典的谱聚类方法进行聚类。在人工数据集、Extended Yale B数据库和PIE数据库上同流行的子空间聚类算法的实验对比证明了所提改进算法的有效性和对高斯噪声的鲁棒性。  相似文献   

3.
王宇 《移动信息》2024,46(1):223-225
随着人工智能和计算机视觉技术的快速发展,人脸识别技术在各领域得到了广泛的应用。人脸识别可以应用于安全监控、身份认证、社交媒体、人机交互等多个领域,它能自动识别和检测人脸,并将其与预先存储的人脸进行比对和匹配。低秩表示是一种利用低秩矩阵对高维数据进行降维表示的方法。在人脸识别中应用低秩表示,可以提取出重要的人脸特征,减少冗余信息和噪声的影响。低秩表示还能增强模型的鲁棒性,使其对光照、表情、姿态等具有更好的适应性。文中对基于低秩表示的人脸识别方法进行了研究,以期为相关人员提供参考。  相似文献   

4.
为实现高效、精准的高光谱图像分类,该文利用低秩矩阵恢复从原始数据中提取低维特征,实现高光谱图像的压缩表示。针对高光谱应用的特殊性,该文算法基于结构相似性度量(Structural Similarity Index Measurement, SSIM)对矩阵恢复过程提出了信噪分离约束,有助于选择更优的模型参数,增强表示的准确性。实验证明,相比现有相关方法,该文算法能够有效去除高光谱图像中的噪声,表示结果更为鲁棒;在仅使用低维特征时,仍能达到较高的分类精度。  相似文献   

5.
提出一种基于低秩表示和学习字典的高光谱遥感图像异常探测算法.相对于其它低秩矩阵分解方法如鲁棒主成分分析,低秩表示方法更为契合高光谱图像的线性混合模型.该算法将低秩表示模型应用到高光谱图像异常探测问题上来,引入表征背景信息的学习字典,大大增强了低秩表示模型对初始参数的鲁棒性.仿真和实际高光谱数据的实验结果表明,所提出的算法有效地提高了异常的探测率,同时对初始参数具有较好的鲁棒性,可以作为一种解决高光谱图像异常探测的有效手段.  相似文献   

6.
曹蒙蒙  李新叶  范月坤 《电子科技》2015,28(4):57-60,64
针对现有的车标识别方法无法较好地处理阴影、遮挡、污损等情况下识别率低的问题,提出了基于判别低秩矩阵恢复和稀疏表示的车标识别方法。文中采用判别低秩矩阵恢复来纠正效果较差的训练样本,并通过学习一个低秩投影矩阵,将待测样本特征矩阵投影到相应低秩子空间来恢复干净的测试样本。并采用稀疏表示方式进行分类识别。同时,在Medialab LPR Database数据集上进行了对比实验,实验结果表明,该识别方法的性能要优于当前其他识别方法  相似文献   

7.
8.
红外和可见光图像融合广泛应用于目标跟踪、检测和识别等领域。为了保留细节的同时增强对比度,本文提出一种基于潜在低秩表示的红外和可见光图像融合方法。潜在低秩分解将源图像分解为基层和显著层,其中基层包含主要内容和结构信息,显著层包含能量相对集中的局部区域。进一步利用比例金字塔分解得到低频和高频的基层子带,并针对不同层的特点设计对应的融合规则。利用稀疏表示表达低频基层较分散的能量,设计L1范数最大和稀疏系数最大规则,加权平均融合策略保留不同的显著特征;绝对值最大增强高频基层的对比度信息;而显著层则利用局部方差度量局部显著性,加权平均方式突出对比度较强的目标区域。在TNO数据集上的定性和定量实验分析表明方法具有良好的融合性能。基于低秩分解的方法能够增强红外和可见光融合图像中目标对比度的同时保留了丰富的细节信息。  相似文献   

9.
胡正平  白帆  王蒙  孙哲 《信号处理》2016,32(11):1299-1307
针对训练样本和测试样本均存在光照及遮挡时,破坏图像低秩结构问题,本文提出基于监督低秩子空间恢复的正则鲁棒稀疏表示人脸识别算法。首先,将所有训练样本构造成矩阵D,对矩阵D进行监督低秩矩阵分解,分解为低秩类相关结构A,低秩类内差异结构B和稀疏误差结构E;然后用主成分分析方法找到类相关结构A低秩子空间的变换矩阵;再通过变换矩阵将训练样本和测试样本投影到低秩子空间;最后,在低秩子空间中,通过正则鲁棒稀疏编码进行加权分类识别。在AR和Extended Yale B公开人脸数据库上的实验结果验证本文算法的有效性及鲁棒性。   相似文献   

10.
在人脸识别中,人脸图像往往受到表情、光照、遮挡、姿态变化的影响,对此本文提出一种基于低秩特征脸与协同表示的人脸识别算法。该算法先用低秩矩阵恢复算法分解出训练样本图像的误差图像,再分别对训练样本与误差图像提取特征构造特征字典,计算测试样本图像特征字典下的协同表示系数,最后通过重构误差进行分类。通过AR和ORL人脸库进行实验,结果表明,本文提出的人脸识别算法的识别率、识别速率得到有效提高。  相似文献   

11.
为了更好地提高人脸识别率及其识别效率,提出了一种基于多流形判别分析(MMDA)的图像特征提取方法.在MM-DA方法中,为了寻求能够同时最大化类间散布矩阵和最小化类内散布矩阵的判别矩阵,类间、类内分布图分别被用来描述类间和类内的分离性,类内图可以表示子流形的信息,而类间图可以代表多流形的信息,从而更好地实现分类.在ORL及FERET人脸数据库上进行实验,结果表明了MMDA方法在特征提取中的有效性.  相似文献   

12.
为准确有效地实现自然图像的压缩感知(CS)重构,该文提出一种基于图像非局部低秩(NLR)和加权全变分(WTV)的CS重构算法。该算法考虑图像的非局部自相似性(NSS)和局部光滑特性,对传统的全变分(TV)模型进行改进,只对图像的高频分量设置权重,并用一种差分曲率的边缘检测算子来构造权重系数。此外,算法以改进的TV模型与NLR模型为约束构建优化模型,并分别采用光滑非凸函数和软阈值函数来求解低秩和全变分优化问题,很好地利用了图像的自身性质,保护了图像的细节信息,并提高了算法的抗噪性和适应性。仿真结果表明,与基于NLR的CS算法相比,相同采样率下,该文所提算法的峰值信噪比最高可提高2.49 dB,且抗噪性更强,验证了算法的有效性。  相似文献   

13.
该文提出一种基于空间约束的快速鲁棒特征(SURF)匹配优化算法,称为SC-SURF。首先通过SURF算法检测和匹配图像的特征点。然后根据最近邻比例越低其匹配精度越高的特点,得到按最近邻比率排序的匹配点。并以最优匹配点作为参考点生成新的坐标系,利用空间位置关系地图对每对匹配点进行编码。同时为了简化随机抽样一致性(RANSAC)算法,选择尽量少的最优匹配点对作为RANSAC的代表测试数据集,并由该测试数据集拟合目标投影变换矩阵。最后结合匹配点间的空间位置关系和简化的RANSAC算法对匹配点进行几何校验。实验表明该方法在达到良好匹配精度的同时,具有鲁棒性强,匹配速度快的优点。  相似文献   

14.
针对遥感图像场景分类面临的类内差异性大、类间相似性高导致的部分场景出现分类混淆的问题,该文提出了一种基于双重注意力机制的强鉴别性特征表示方法.针对不同通道所代表特征的重要性程度以及不同局部区域的显著性程度不同,在卷积神经网络提取的高层特征基础上,分别设计了一个通道维和空间维注意力模块,利用循环神经网络的上下文信息提取能...  相似文献   

15.
In the problem of unsupervised domain adaption Extreme learning machine (ELM), the output layer parameters need to have both classification and domain adaptation functions, which often cannot be simultaneously fully utilized. In addition, traditional matching method based on data probability distribution cannot find the common subspace of source and target domains under large difference between domains. In order to alleviate the pressure of double functions of classifier parameters, the entire ELM learning process is mainly divided into two stages: feature representation and adaptive classifier learning, thus a joint feature representation and classifier learning based unsupervised domain adaption ELM model is proposed. In the feature representation stage, the source and target domain data are projected to their respective subspace while minimizing the difference in probability distribution between the two domains. In the adaptive classifier learning stage, the smooth manifold regularization term of target domain is used to improve the parameter adaptive ability. Experiments on six different types of datasets show that the proposed model has higher cross-domain classification accuracy.  相似文献   

16.
针对现有无线射频信号的手势识别研究中的数据预处理和特征利用问题,该文提出一种用于调频连续波(FMCW)雷达的时空压缩特征表示学习的手势识别算法。首先对手部反射的毫米波雷达回波信号的距离-多普勒(RD)图进行静态干扰去除和动目标点筛选,减少杂波对手势信号的干扰,同时减少计算数据量;然后提出一种压缩手势时空特征的表示方法,利用动目标点的主导速度来表示手势的运动特征,实现多维特征的压缩映射,并保留手势运动的关键特征信息;最后设计了一个单通道的卷积神经网络(CNN)来学习和分类多维手势特征信息并应用于多用户和多位置的手势识别。实验结果表明,与现有其他手势识别算法相比,该文提出的手势识别方法在识别精度、实时性以及泛化能力上都具有明显的优势。  相似文献   

17.
提取符合数据分布结构的特征一直是模式识别领域的热点问题。基于固定核映射方法具有获取非线性特征的能力,但对映射函数类型及其参数十分敏感。论文提出一种基于多层自动编码器的特征提取算法,该深度学习网络模型的训练分为无监督预训练以及基于边际Fisher准则的监督式精雕训练过程。通过数据生成性预训练和精雕过程中正则化手段防止过拟合训练。在多个数据集进行分类的实验结果进一步验证算法的有效性。  相似文献   

18.

该文针对有限次采样导致传统波达方向角(DOA)估计算法存在较大估计误差的问题,提出一种基于稀疏低秩分解(SLRD)的稳健DOA估计方法。首先,基于低秩矩阵分解方法,将接收信号协方差矩阵建模为低秩无噪协方差及稀疏噪声协方差矩阵之和;而后基于低秩恢复理论,构造关于信号和噪声协方差矩阵的凸优化问题;再者构建关于采样协方差矩阵估计误差的凸模型,并将此凸集显式包含进凸优化问题以改善信号协方差矩阵估计性能进而提高DOA估计精度及稳健性;最后基于所得最优无噪声协方差矩阵,利用最小方差无畸变响应(MVDR)方法实现DOA估计。此外,基于采样协方差矩阵估计误差服从渐进正态分布的统计特性,该文推导了一种误差参数因子选取准则以较好重构无噪声协方差矩阵。数值仿真表明,与传统常规波束形成(CBF)、最小方差无畸变响应(MVDR)、传统多重信号分类(MUSIC)及基于稀疏低秩分解的增强拉格朗日乘子(SLD-ALM)算法相比,有限次采样条件下所提算法具有较高DOA估计精度及较好稳健性能。

  相似文献   

19.
该文针对基于非负低秩稀疏图的半监督学习算法不能准确地描述数据结构的问题,提出一种融合平滑低秩表示和加权稀疏约束的改进算法。该算法分别对经典算法的低秩项和稀疏项进行改进,准确地捕获了数据的全局子空间结构和局部线性结构。在构建目标函数时,使用对数行列式函数代替核范数平滑地估计秩函数,同时利用形状交互信息和有标签样本的类别信息构造加权稀疏约束正则项。然后通过带有自适应惩罚的线性交替方向方法求解目标函数并采用有效的后处理方法重构数据的图结构,最后利用基于局部和全局一致性的半监督分类框架完成学习任务。在ORL库,Extended Yale B库和USPS库上的实验结果表明,该改进算法提高了半监督学习的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号