共查询到18条相似文献,搜索用时 70 毫秒
1.
为改善运营商网络提供的移动服务体验,该文研究服务功能链(SFC)的在线迁移问题。首先基于马尔可夫决策过程(MDP)对服务功能链中的多个虚拟网络功能(VNF)在运营商网络中的驻留位置迁移进行模型化分析。通过将强化学习和深度神经网络相结合提出一种基于双深度Q网络(double DQN)的服务功能链迁移机制,该迁移方法能在连续时间下进行服务功能链的在线迁移决策并避免求解过程中的过度估计。实验结果表明,该文所提出的策略相比于固定部署算法和贪心算法在端到端时延和网络系统收益等方面优势明显,有助于运营商改善服务体验和资源的使用效率。 相似文献
2.
针对网络切片场景下时变网络流量引起的虚拟网络功能(VNF)迁移问题,该文提出一种基于联邦学习的双向门控循环单元(FedBi-GRU)资源需求预测的VNF迁移算法。该算法首先建立系统能耗和负载均衡的VNF迁移模型,然后提出一种基于分布式联邦学习框架协作训练预测模型,并在此框架的基础上设计基于在线训练的双向门控循环单元(Bi-GRU)算法预测VNF的资源需求。基于资源预测结果,联合系统能耗优化和负载均衡,提出一种分布式近端策略优化(DPPO)的迁移算法提前制定VNF迁移策略。仿真结果表明,两种算法的结合有效地降低了网络系统能耗并保证负载均衡。 相似文献
3.
针对卫星通信系统中的任务调度问题,基于深度强化学习框架提出了一种多分支深度Q网络模型的卫星通信任务调度方法。通过引入任务列表分支网络和资源池分支网络,该模型能够同时提取卫星任务状态和卫星资源池状态的特征,并通过价值分支网络计算动作价值函数;在模型输出部分引入了包括任务选择与资源优先级动作的多个动作的选择,增加了调度动作的选择空间。实验结果表明,在非零浪费和零浪费数据集上,多分支深度Q网络模型与启发式方法相比在提高平均资源占用性能的同时显著降低了运行的时间开销。 相似文献
4.
在无线异构网络中,中继节点的智能化决策直接影响网络的频谱效率、能量效率以及服务质量。针对无线异构网络的中继决策问题,文章提出一种基于深度Q网络的强化学习方法,概述了无线异构网络的组成及中继节点的作用,介绍了深度Q网络算法的优势及网络结构,定义了无线网络环境的状态空间、动作空间和奖励函数,构建了端到端的深度Q网络决策模型,最后通过仿真实验验证了文章所提方法的有效性。 相似文献
5.
深度强化学习作为统计学习常见算法,将其应用于智能网络安全防护设计环节将取得显著效果,以此规避智能网络安全风险。文章简要分析智能网络安全常见问题,根据对问题的分析研究,总结智能网络安全防护优化设计具体目标,经由设计网络状态集合、细化网络动作集合、规范设计回报函数、强化数据分析功能等设计步骤的落实,智能网络将充分发挥安全服务作用,由此维护网络安全。本文提出了可行性措施,期待提升网络安全防护的有效性。 相似文献
6.
机器学习逐渐发展成为一种成熟强大的技术工具,并被广泛应用于无线通信抗干扰领域。其中,较为典型的有基于深度强化学习的抗干扰方法,通过与动态、不确定通信环境的不断交互来学习最优用频策略,有效解决动态频谱接入抗干扰的问题。然而,由于外界电磁频谱空间复杂、干扰模式样式动态多变,从头开始学习复杂的抗干扰通信任务往往时效性差,导致学习效率和通信性能显著下降。针对上述问题,提出基于深度迁移学习的动态频谱快速适配抗干扰方法。首先,通过构建预训练模型对已知干扰模式进行学习;其次,使用卷积神经网络提取现实场景下的感知频谱数据,重用过往经验优先启动加速适配;最后,运用微调策略辅助强化学习实施在线抗干扰信道接入。仿真结果表明,相较于传统强化学习算法,所提方法能够有效加快算法收敛速度,提升通信设备抗干扰性能。 相似文献
7.
在引入休眠机制的超密集异构无线网络中,针对网络动态性增强,导致切换性能下降的问题,该文提出一种基于改进深度Q学习的网络选择算法。首先,根据网络的动态性分析,构建深度Q学习选网模型;其次,将深度Q学习选网模型中线下训练模块的训练样本与权值,通过迁移学习,将其迁移到线上决策模块中;最后,利用迁移的训练样本及权值加速训练神经网络,得到最佳选网策略。实验结果表明,该文算法显著改善了因休眠机制导致的高动态性网络切换性能下降问题,同时降低了传统深度Q学习算法在线上选网过程中的时间复杂度。 相似文献
8.
认知用户通过频谱感知和接入过程识别频谱状态并占用空闲频谱,可有效利用频谱资源。针对频谱感知中存在感知错误和频谱接入中存在用户碰撞的问题,首先建立多用户多信道模型,设计频谱感知和频谱接入过程;然后通过结合双深度Q网络和竞争Q网络,设计竞争双深度Q网络,解决过估计问题的同时优化网络结构;最后通过智能体与所设计模型中状态、观测、回报和策略的交互,完成使用竞争双深度Q网络解决频谱感知和接入问题的一体化研究。仿真结果表明,相比于已有深度强化学习方法,使用竞争双深度Q网络得到的数值结果更稳定且感知正确率和信道利用率都提高了4%。 相似文献
9.
数据中心网络中,虚拟机在线迁移需要在网络核心链路上完成大量的数据传输,造成虚拟机承载的网络应用及其他应用性能下降.在继承现有相同内存页重传避免方法的基础上,引进带链表的计数型布隆过滤器查找结构,避免了内存页查找的假阳性问题.进一步提出了最大化剪枝算法,实现链表长度的最大化缩减,加速查找匹配过程,完成数据中心网络中机架级的虚拟机快速在线迁移.实验结果表明,该方法比现有方法的数据传输量更低,迁移时间更短,降低了迁移对网络应用性能造成的影响. 相似文献
10.
强化学习是Agent学习中广泛使用的方法,在智能机器人、经济学、工业制造和博弈等领域得到了广泛的应用,但学习速度慢是强化学习的主要不足。迁移学习可从源任务中获得与目标任务相关的知识,利用这些知识去提高学习效率与效果。本文提出Agent地图迁移算法,实现了Agent在不同状态空间下的经验迁移。实现将Agent在简单环境中的学习经验迁移到复杂环境中,实验中验证了算法可加快Agent路径规划速度。 相似文献
11.
为了满足无线数据流量大幅增长的需求,异构云无线接入网(H-CRAN)的资源优化仍然是亟待解决的重要问题。该文在H-CRAN下行链路场景下,提出一种基于深度强化学习(DRL)的无线资源分配算法。首先,该算法以队列稳定为约束,联合优化拥塞控制、用户关联、子载波分配和功率分配,并建立网络总吞吐量最大化的随机优化模型。其次,考虑到调度问题的复杂性,DRL算法利用神经网络作为非线性近似函数,高效地解决维度灾问题。最后,针对无线网络环境的复杂性和动态多变性,引入迁移学习(TL)算法,利用TL的小样本学习特性,使得DRL算法在少量样本的情况下也能获得最优的资源分配策略。此外,TL通过迁移DRL模型的权重参数,进一步地加快了DRL算法的收敛速度。仿真结果表明,该文所提算法可以有效地增加网络吞吐量,提高网络的稳定性。 相似文献
12.
针对5G网络切片架构下业务请求动态性引起的虚拟网络功能(VNF)迁移优化问题,该文首先建立基于受限马尔可夫决策过程(CMDP)的随机优化模型以实现多类型服务功能链(SFC)的动态部署,该模型以最小化通用服务器平均运行能耗为目标,同时受限于各切片平均时延约束以及平均缓存、带宽资源消耗约束。其次,为了克服优化模型中难以准确掌握系统状态转移概率及状态空间过大的问题,该文提出了一种基于强化学习框架的VNF智能迁移学习算法,该算法通过卷积神经网络(CNN)来近似行为值函数,从而在每个离散的时隙内根据当前系统状态为每个网络切片制定合适的VNF迁移策略及CPU资源分配方案。仿真结果表明,所提算法在有效地满足各切片QoS需求的同时,降低了基础设施的平均能耗。 相似文献
13.
针对5G网络场景下缺乏对资源需求的有效预测而导致的虚拟网络功能(VNF)实时性迁移问题,该文提出一种基于深度信念网络资源需求预测的VNF动态迁移算法。该算法首先建立综合带宽开销和迁移代价的系统总开销模型,然后设计基于在线学习的深度信念网络预测算法预测未来时刻的资源需求情况,在此基础上采用自适应学习率并引入多任务学习模式优化预测模型,最后根据预测结果以及对网络拓扑和资源的感知,以尽可能地减少系统开销为目标,通过基于择优选择的贪婪算法将VNF迁移到满足资源阈值约束的底层节点上,并提出基于禁忌搜索的迁移机制进一步优化迁移策略。仿真表明,该预测模型能够获得很好的预测效果,自适应学习率加快了训练网络的收敛速度,与迁移算法结合在一起的方式有效地降低了迁移过程中的系统开销和服务级别协议(SLA)违例次数,提高了网络服务的性能。 相似文献
14.
鉴于低轨卫星网络的高动态性和空间环境的复杂性,如何提供在线的快速服务功能链(SFC)部署方法,成为低轨卫星边缘网络中亟待解决的问题。综合考虑节点和链路容量等约束以及服务迁移等切换代价,针对部署多接入边缘计算(MEC)服务器的低轨卫星网络,该文提出一种基于自然梯度参与者-评价者(Actor-Critic)强化学习架构的SFC在线部署方法。首先,针对低轨卫星网络的环境高动态性, 对实时容量约束和迁移代价进行建模;其次,引入马尔可夫决策过程(MDP),综合考虑服务迁移和卫星坐标等因素,描述低轨卫星网络的状态转移过程;最后,提出一种基于自然梯度的在线SFC部署强化学习方法,不同于标准梯度,自然梯度法进行模型层面的更新,以避免神经网络的训练陷入局部最优解。仿真结果表明,该文方法可逼近全局最优解,并在端到端时延性能上优于基于标准梯度的强化学习部署方法。 相似文献
15.
针对NFV/SDN架构下,服务功能链(SFC)的资源需求动态变化引起的虚拟网络功能(VNF)迁移优化问题,该文提出一种基于深度强化学习的VNF迁移优化算法。首先,在底层CPU、带宽资源和SFC端到端时延约束下,建立基于马尔可夫决策过程(MDP)的随机优化模型,该模型通过迁移VNF来联合优化网络能耗和SFC端到端时延。其次,由于状态空间和动作空间是连续值集合,提出一种基于深度确定性策略梯度(DDPG)的VNF智能迁移算法,从而得到近似最优的VNF迁移策略。仿真结果表明,该算法可以实现网络能耗和SFC端到端时延的折中,并提高物理网络的资源利用率。 相似文献
16.
针对云原生环境下攻击场景的复杂性导致移动目标防御策略配置困难的问题,该文提出一种基于深度强化学习的移动目标防御策略优化方案(SmartSCR)。首先,针对云原生环境容器化、微服务化等特点,对其安全威胁及攻击者攻击路径进行分析;然后,为了定量分析云原生复杂攻击场景下移动目标防御策略的防御效率,提出微服务攻击图模型并对防御效率进行刻画。最后,将移动目标防御策略的优化问题建模为马尔可夫决策过程,并使用深度强化学习解决云原生应用规模较大时带来的状态空间爆炸问题,对最优移动目标防御配置进行求解。实验结果表明,SmartSCR能够在云原生应用规模较大时快速收敛,并实现逼近最优的防御效率。 相似文献
17.
针对传统优化算法在求解长时间尺度内通信无人机(UAV)动态部署时复杂度过高且难以与动态环境信息匹配等缺陷,该文提出一种基于多智能体深度强化学习(MADRL)的UAV动态预部署策略。首先利用一种深度时空网络模型预测用户的预期速率需求以捕捉动态环境信息,定义用户满意度的概念以刻画用户所获得UAV提供服务的公平性,并以最大化长期总体用户满意度和最小化UAV移动及发射能耗为目标建立优化模型。其次,将上述模型转化为部分可观测马尔科夫博弈过程(POMG),并提出一种基于MADRL的H-MADDPG算法求解该POMG中轨迹规划、用户关联和功率分配的最佳决策。该H-MADDPG算法使用混合网络结构以实现对多模态输入的特征提取,并采用集中式训练-分布式执行的机制以高效地训练和执行决策。最后仿真结果证明了所提算法的有效性。 相似文献
18.
针对大规模无线传感器网络(WSN)中的事件检测问题(EDP),传统的方法通常依赖先验信息,阻碍了实际应用。该文为 EDP 提出了一种基于深度学习的算法,称为交替方向乘子法网络(ADMM-Net)。首先,采用低秩稀疏矩阵分解来建模事件的时空相关性。之后,EDP 被表述为一个带约束的优化问题并用交替方向乘子法(ADMM)求解。然而,优化算法收敛慢且算法的性能依赖于对先验参数的仔细选择。该文基于深度学习中“展开”的概念,提出了一种用于EDP的深度神经网络ADMM-Net。通过“展开”ADMM算法的方式得到。 ADMM-Net 具有固定层数,其参数可以通过监督学习训练获得。无需先验信息。相比于传统算法,提出的 ADMM-Net 收敛快且不需先验信息。人造数据集和真实数据集的仿真结果验证了ADMM-Net 的有效性。 相似文献
|