首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
雷电等瞬态干扰严重影响了高频雷达的工作性能,必须加以抑制。本文提出了基于矩阵奇异值分解的高频雷达瞬态干扰抑制方法。该方法将高频雷达回波信号分段构造成矩阵并进行奇异值分解,首先根据矩阵有效秩的大小判断雷达回波中是否存在瞬态干扰,然后利用奇异值分解的正交性实现雷达回波的正交分解,使瞬态干扰分离出来,以利于检测,最后通过建立线性预测的全极点AR模型对瞬态干扰位置处的回波信号予以恢复。实测数据处理结果表明本文方法是有效的。  相似文献   

2.
基于矩阵奇异值分解的高频雷达瞬态干扰抑制   总被引:5,自引:0,他引:5  
雷电等瞬态干扰严重影响了高频雷达的工作性能,必须加以抑制。该文提出了基于矩阵奇异值分解的高频雷达瞬态干扰抑制方法。该方法将高频雷达回波信号分段构造成矩阵并进行奇异值分解,首先根据矩阵有效秩的大小判断雷达回波中是否存在瞬态干扰,然后利用奇异值分解的正交性实现雷达回波的正交分解,使瞬态干扰分离出来,以利于检测,最后通过建立线性预测的全极点自回归模型对瞬态干扰位置处的回波信号予以恢复。实测数据处理结果表明该方法是有效的。  相似文献   

3.
4.
冯大政  保铮 《电子学报》1995,23(12):115-118
本文利用线性神经网络的结构和第一主分量分析神经网络的动态方程,提出一种左、右神经网络,给出并证明了它的有界性和稳定性定理,加上反Hebb权修正规则,LRNN可以进行奇异值分解和对称矩阵的特征值分解,从渐近收敛速度和仿真结果都说明,LRNN是非常有效的。  相似文献   

5.
本文提出一个实时奇异值分解(SVD)的全并行神经网络,给出并证明了它的有界性定理和稳定性定理,同时给出一个模拟例子。理论和模拟结果都说明所提出的神经网络对于SVD是有效的。  相似文献   

6.
7.
基于奇异值分解的图像去噪   总被引:3,自引:0,他引:3  
提出了利用奇异值分解去除图像噪声的方法。从矩阵的角度出发,通过对图像矩阵进行奇异值分解,将包含图像信息的矩阵分解到一系列奇异值和奇异值矢量对应的子空间中,然后通过有效奇异值重构图像矩阵达到去噪目的。试验利用MATLAB通过对MRI(核磁共振)医学图像进行去噪处理,验证了奇异值分解的去噪效果,并且通过对多幅图像的试验结果进行分析,得到了去噪重构图像时所需有效奇异值数目的统计值。  相似文献   

8.
《现代电子技术》2019,(12):40-44
针对人脸识别在有遮挡、表情变化和光照变化引起的鲁棒性变差问题,以及传统人工神经网络用于人脸识别时存在的维数灾难问题,提出一种分块奇异值分解和小波神经网络结合的人脸识别算法。首先,将人脸图像进行分块,获得图片局部的奇异值,并将其按一定顺序排列得到人脸的特征向量;然后,运用加入动量项的改进小波神经网络进行人脸图像分类识别;最后,在Matlab环境下利用ORL和YALE人脸图像数据库进行仿真实验,并且在GUI图形用户界面上进行验证。实验结果表明,该算法实现简单,识别率高,对光照、遮挡、表情等变化有很好的鲁棒性,具有很大的使用价值。  相似文献   

9.
基于奇异值分解的图像匹配方法   总被引:10,自引:2,他引:10  
传统的图像匹配方法中, 由于实时图和参考图之间存在着灰度差异和几何形变,仅用灰度作为特征进行匹配算法的性能很容易受到影响。文中提出了一种基于奇异值分解的图像匹配方法。该方法首先利用奇异值分解方法,求出模板图像矩阵的奇异值及奇异值向量,用它们作为模板图像的特征代替传统算法中的灰度对两幅待匹配图像进行全局搜索定位。由于奇异分解方法所特有的优越性,匹配实验取得了良好效果。实验结果验证了该方法的有效性。  相似文献   

10.
图像表示是模式识别研究中关键问题之一.奇异值分解(SVD, Singular Value Decomposition)是一种有效的图像表示方法,近年来已被广泛应用到计算机视觉、信号处理、模式识别和图像处理等领域.但是,奇异值分解在处理高维数据时的效率瓶颈以及无法同时考虑样本类别信息和固有几何结构信息的缺陷制约了奇异值分解的应用范围和应用研究的发展. 本项目针对奇异值分解存在的局限性,通过系统地研究奇异值分解在特征提取中的应用,拓展和推动奇异值分解的应用,具有重要的理论研究意义和实用价值.同时,将研究成果用于解决混纺纤维的纤维识别问题,对纺织品截面纤维进行准确的图像表示.其研究成果将为解决纺织品检验领域纤维自动识别与分析这一世界性难题带来创新性的突破.  相似文献   

11.
该文提出了一种新的基于分形编码的人脸识别方法。在分形近邻距离的基础上,提出了分形奇异值近邻距离,并把分形编码和局部奇异值分解结合起来,提高了识别率。实验结果表明,与仅仅使用分形近邻距离相比,该算法对光照变化、表情和姿态变化具有更大的容忍度,而且训练时间短,识别率高。  相似文献   

12.
基于神经网络的数字识别的研究   总被引:13,自引:3,他引:10  
数字识别在很多重要领域有着广泛的应用。通过对人工神经元网络的研究与学习,提出了一种基于神经网络的数字识别方法,并作了大量的试验,取得了满意的结果。对于印刷体数字的识别率达到了100%,对于手写体数字的识别也达到了98%以上。  相似文献   

13.
用传统方法进行文字识别时,需要花费时间分别去提取各个文字的区域.但是在讲究速度与效率的实时系统中,文字识别的速度是一个值得深思的问题.提出了一种多文字识别方法,其核心思想是将输入的文字当做一个整体进行处理,而不需要在单字区域提取上消耗过多时间,再利用ROI以及投影法进一步减少比例法特征提取算法的运算时间.在此基础上,采用BP神经网络进行样本训练与文字识别.实验结果表明,该方法能够有效地实现快速识别,识别四个字的所花费的时间为120 ms.  相似文献   

14.
一种基于奇异值特征的神经网络人脸识别新途径   总被引:38,自引:1,他引:38       下载免费PDF全文
甘俊英  张有为 《电子学报》2004,32(1):170-173
本文在Z Hong等人使用的奇异值分解(SVD)基础上,将人脸图像矩阵的奇异值作为识别特征,解决了奇异值处理、神经网络训练策略和竞争选择问题;运用BP网络进行识别,提出了一种基于奇异值特征的神经网络人脸识别新方法.基于ORL人脸数据库的多次反复实验结果表明,在大样本情况下,识别方法具有实现简单、识别速度快、识别率高的特点,为人脸的实时识别提供了一种新途径.  相似文献   

15.
基于神经网络的车牌字符识别算法研究   总被引:1,自引:0,他引:1  
提出了一种基于神经网络的车牌字符自动识别算法。用本文提出的方法对车牌图像进行实验,对车牌字符样本进行特征提取,用特征来训练有效分类器,用MATLAB完成了对车牌照数字识别的模拟,结果证实此算法对车牌字符识别有一定准确性,具有良好的效果。  相似文献   

16.
提出了一种奇异值分解(SVD)的图像压缩算法,该算法通过对数字图像矩阵进行奇异值分解,将一幅图像转换成包含几个非零值的奇异值矩阵,实现图像压缩,便于图像的储存和传输。MATLAB仿真分析表明,矩阵的奇异值分解压缩方法具有较好的压缩性能,有效提高了压缩比。  相似文献   

17.
基于ICA与BP神经网络相结合的人脸识别研究   总被引:2,自引:0,他引:2  
提出了独立成分分析和BP神经网络相结合的人脸识别方法。首先对人脸图像进行小渡分解。提取人脸图像的低频子带图像,然后用被立成分分析方法对低频子带图像进行特征提取,并用改进的BP神经网络时所提取的人脸特征进行分类识别。在AR人脸图像库中进行的实验表明,此方法取得了较高的识别率。  相似文献   

18.
1IntroductionInrecentyears,theneuralnetworktheoryhascausedgreatintheareaofpatternrecognition.Themainreasonisthattheneuralnetworkhasmanyattractiveadvantages,whencomparedtotheconventionalpatternrecognitionmethods.AmongthevariousneuralnetworkmodelsIthebackpr…  相似文献   

19.
决策层信息融合的神经网络模型与算法研究   总被引:8,自引:0,他引:8  
黎湘  郁文贤 《电子学报》1997,25(9):117-120
本文对信息融合问题中决策层融合方法进行了分析与比较,提出了一种新的决策层信息融合算法,即改进型ART2神经网络融合算法,该融合算法在综合大脑对多源信息融合的特点和优势基础上,提出了将信息进行匹配和调和相融合的处理方式。对实际的决策层信息融合目标识别问题,该算法具有弹性去除信息间相关性以及合理处理矛盾信息的能力。同时,MART神经网络模型通过自适应地调整网络参数,对信度的增长有较好的控制能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号