共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对环境试验温度测量精度不高,测温延时较大的问题,提出了基于BP神经网络的温度预测方法。该方法通过测量瞬时温度变化率,利用BP神经网络的温度预测模型,对温度进行预测。在MATLAB中仿真表明,该方法对温度测量的精度有了明显的提高,对测温延时有了明显的改善。 相似文献
3.
基于改进贝叶斯正则化BP神经网络模型的网络安全态势预测方法研究 总被引:1,自引:0,他引:1
随着互联网的迅速发展,网络安全问题越来越严重,分析及预测网络安网络安全态势,对于网络安全具有重要意义。本文在网络安全态势量化的的基础上,改进贝叶斯算法,提出一种改进型贝叶斯正则化BP神经网络模型的网络安全态势预测方法,通过模拟网络环境进行数据分析,验证了该预测方法可以减小了训练误差和预测误差,提高了对网络安全态势预测精度,证明了该方法的可行性。 相似文献
4.
本文利用神经网络处理非线性、复杂性等优势,基于改进的递归神经网络预测网络安全态势,实验结果证明该方法运行效率较高,运行结果与实际值相比,误差较低,精确性较高。 相似文献
5.
本文利用神经网络处理非线性、复杂性等优势,基于改进的递归神经网络预测网络安全态势,实验结果证明该方法运行效率较高,运行结果与实际值相比,误差较低,精确性较高。 相似文献
6.
To predict the attack behaviors accurately and comprehensively as well as to quantify the threat of attack,a quantitative method for network security situation based on attack prediction was proposed.By fusing the situation factors of attacker,defender and network environment,the capability of attacker and the exploitability rate of vulnerability were evaluated utilizing the real-time detected attack events,and the expected time-cost for attack-defense were further calculated.Then an attack prediction algorithm based on the dynamic Bayesian attack graph was designed to infer the follow-up attack actions.At last,the attack threat was quantified as the security risk situation from two levels of the hosts and the overall network.Experimental analysis indicates that the proposed method is suitable for the real adversarial network environment,and is able to predict the occurrence time of attack accurately and quantify the attack threat reasonably. 相似文献
7.
In order to solve the problem of insufficient accuracy of current network security situation prediction methods,a new network security situation prediction model was proposed based on self-correcting coefficient smoothing.Firstly,a network security assessment quantification method was designed to transform the alarm information into situation real value time series based on the entropy correlation degree.Then,the adaptive solution of the static smoothing coefficient was calculated and the predicted initial value was obtained by using the variable domain space.Finally,based on the error category,the time-changing weighted Markov chain was built to modify the initial network situation prediction result and the prediction accuracy was further raised.The prediction model was tested with LL_DOS_1.0 dataset and the experimental results show that the proposed model has higher adaptability and prediction accuracy for network situation time series. 相似文献
8.
《Digital Communications & Networks》2016,2(3):139-144
The security incidents ion networks are sudden and uncertain, it is very hard to precisely predict the network security situation by traditional methods. In order to improve the prediction accuracy of the network security situation, we build a network security situation prediction model based on Wavelet Neural Network (WNN) with optimized parameters by the Improved Niche Genetic Algorithm (INGA). The proposed model adopts WNN which has strong nonlinear ability and fault-tolerance performance. Also, the parameters for WNN are optimized through the adaptive genetic algorithm (GA) so that WNN searches more effectively. Considering the problem that the adaptive GA converges slowly and easily turns to the premature problem, we introduce a novel niche technology with a dynamic fuzzy clustering and elimination mechanism to solve the premature convergence of the GA. Our final simulation results show that the proposed INGA-WNN prediction model is more reliable and effective, and it achieves faster convergence-speed and higher prediction accuracy than the Genetic Algorithm-Wavelet Neural Network (GA-WNN), Genetic Algorithm-Back Propagation Neural Network (GA-BPNN) and WNN. 相似文献
9.
10.
11.
A Wi-Fi security evaluation model was proposed based on BP neural network.Firstly a large number of Wi-Fi hotspots was analyzed,safety information sources about wireless hotspots were selected.Secondly,a model of BP neural network was constructed,the weights were adjusted,and the evaluation system for Wi-Fi safety was formed,which was higher credibility.Finally,on the Android flatform the application based on above theory was designed.A lot of experi-ments show the model is able to scan and evaluate the wireless hotspot around user.It can also provide the disconnect function on unsafe wireless hotspot. 相似文献
12.
针对于车轮多边形阶次发展趋势,运用高精度车轮周向不平顺检测设备进行测量,整合检测到的历史数据,提出了一种基于灰色神经网络的车轮多边形阶次预测模型。该模型充分运用了灰色模型计算量小,不需要大量样本数据的特点以及BP神经网络较强的非线性映射能力,利用该模型对车轮周向每个采样点的不平顺数据进行预测,再通过离散傅里叶变换和滤波处理得出该车轮各个阶次的粗糙度等级,以此来判断车轮多边形阶次的发展,较大程度上解决目前车轮镟修不及时等问题。 相似文献
13.
14.
15.
针对传统信号传播路径损耗模型接收的信号强度指示(received signal strength indication, RSSI)测距误差较大, 提出了基于反向传播(back propagation, BP)神经网络模型的RSSI测距方法.首先, 研究分析传统信号传播路径损耗模型及测距误差; 其次, 利用BP神经网络构建新的路径损耗模型, 并将该模型应用到RSSI测距中, 对基于BP神经网络模型的RSSI测距方法进行研究; 最后, 通过实验和MATLAB仿真对测距方法进行验证.仿真结果表明:BP神经网络模型的RSSI测距误差比传统信号传播路径损耗模型的RSSI测距误差要小. 相似文献
16.
17.
灰色关联分析与支持向量机相融合的网络安全态势评价 总被引:1,自引:0,他引:1
为了提高网络安全态势的评价准确性,提出一种灰色关联分析与支持向量机相融合的网络安全态势评价模型.首先采用灰色关联分析对网络安全态势评价指标进行筛选,并根据对评价结果贡献赋予评价指标权值,然后将重要的评价指标作为支持向量机的输入向量,并采用社会力模型算法选择模型的参数,最后采用仿真实例分析了模型的评价性能.实验结果表明,本文模型通过灰色关联分析选择支持向量机的输入向量和社会力模型算法选择了最合理的型参数,可以准确描述网络安全态势与评价指标之间的变化关系,不仅提高了网络安全态势评价的正确率,加快了建模速度,而且获得比经典模更优的评价结果. 相似文献
18.
19.
《现代电子技术》2019,(20):21-25
在使用BP神经网络构建粮情温度预测模型时,因其存在误差高、稳定性差等缺陷,借鉴遗传算法和粒子群的思想,提出一种GANPSO-BP神经网络来预测粮食温度。首先为验证GANPSO算法的可用性,将该算法与PSO算法和IPSO算法在测试函数上利用Matlab软件进行模拟测试,结果得出GANPSO算法效果相对与其他两种算法有着明显提高;然后再对BP,PSO-BP和GANPSO-BP三种神经网络进行测试,得出BP的均方误差为0.021 79,PSO-BP的均方误差为0.017 65,GANPSO-BP的均方误差为0.013 30;从而得到GANPSO-BP神经网络相对于其他两种有着较好的稳定性,能够很好地预测粮食温度的变化情况。 相似文献