首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
随着车联网(IoV)的迅猛发展,请求进行任务卸载的汽车终端用户也逐渐增长,而基于移动边缘计算(MEC)的通信网络能够有效地解决任务卸载在上行传输时延较高的挑战,但是该网络模型同时也面临着信道资源不足的问题。该文引入的非正交多址(NOMA)技术相较于正交多址(OMA)能够在相同的信道资源条件下为更多的用户提供任务卸载,同时考虑到任务卸载过程中多方面的影响因子,提出了混合NOMA-MEC卸载策略。该文设计了一种基于深度学习网络(DQN)的博弈算法,帮助车辆用户进行信道选择,并通过神经网络多次迭代学习,为用户提供最优的功率分配策略。仿真结果表明,该文所提出的混合NOMA-MEC卸载策略能够有效地优化多用户卸载的时延以及能耗,最大限度保证用户效益。  相似文献   

2.
随着车联网(IoV)的迅猛发展,请求进行任务卸载的汽车终端用户也逐渐增长,而基于移动边缘计算(MEC)的通信网络能够有效地解决任务卸载在上行传输时延较高的挑战,但是该网络模型同时也面临着信道资源不足的问题。该文引入的非正交多址(NOMA)技术相较于正交多址(OMA)能够在相同的信道资源条件下为更多的用户提供任务卸载,同...  相似文献   

3.
随着智能交通的快速发展和车联网中数据流量爆炸式的增长,汽车终端请求卸载的任务对时延和带宽有了更加严苛的要求。在现有的云计算服务模式中,车辆可以访问云服务器来获得强大的计算、存储和网络资源,但缺点是通信传输时延较大,仅依靠云计算可能会导致过度的延迟。为了更加合理利用资源、减小时延、优化卸载策略,提出了一种基于粒子群优化算法的“车-边-云”协同卸载方案。首先通过接入点附近的软件定义网络(Software Define Network,SDN)控制器根据终端用户附近边缘节点、本地终端和云计算节点的计算资源和容量情况得出最优的卸载策略,充分利用本地、移动边缘计算(Mobile Edge Computing,MEC)设备、云端的计算资源,然后通过粒子群优化算法得出“车-边-云”各计算节点的卸载系数,即最优卸载策略。实验结果表明,相比于其他卸载策略,所提的卸载机制对时延优化效果明显,提高了计算资源的利用率。  相似文献   

4.
陈彬 《中国新通信》2023,(20):32-34
随着移动设备和互联网的普及,近年来人们对计算能力和网络资源的需求显著增加。为了降低网络延迟、提高用户体验,移动边缘计算(MEC)应运而生,将云计算与边缘计算相结合成为解决方案。MEC通过将计算资源移动到靠近终端用户的位置来实现这一目的。然而,随着移动设备数量和生成数据量的增加,对MEC网络中的计算资源分配进行优化。其中计算卸载是一种实现方式,它将资源密集型任务从移动设备转移到MEC服务器,以便更高效地处理。故此,本文主要分析了适用于MEC网络的不同计算卸载策略,以期为后续的相关研究和工作开展提供帮助。  相似文献   

5.
随着智能交通的快速发展,车辆终端产生大量需要实时处理的数据消息,而在有限资源上的竞争将会增加消息处理的时延,且对终端设备造成很大的能量消耗。针对时延和能量损耗的均衡关系,该文提出一种基于移动边缘计算(MEC)的内容感知分类卸载算法。首先根据层次分析法对安全消息进行优先级划分,然后建立时延和能量损耗的最优任务卸载模型,通过给时延和能量损耗赋予不同的权重系数构造关系模型,并利用拉格朗日松弛法将非凸问题转化为凸问题,从而结合次梯度投影法和贪婪算法得到问题的可行解。性能评估结果表明,该算法在一定程度上改善了消息处理时延和能量损耗。  相似文献   

6.
工业互联网是一种新的产业和应用形态,往往存在海量相互连接交互的设备,且对计算资源和时延有极高的要求.引入多接入边缘计算和软件定义网络架构,提出了一种基于SDN的工业互联网多接入边缘计算(SDN-IIOT-MEC)集成架构,将计算任务下沉到边缘云服务器,在计算、管控、编排等方面的能力上有了很大提升,并设计了该集成架构下的...  相似文献   

7.
在车联网(IOV)环境中,如果将车辆的计算任务都放置在云平台执行,无法满足对于信息处理的实时性,考虑移动边缘计算技术以及任务卸载策略,将用户的计算任务卸载到靠近设备边缘的服务器去执行。但是在密集的环境下,如果所有的任务都卸载到附近的边缘服务器去执行,同样会给边缘服务器带来巨大的负载。该文提出基于模拟退火机制的车辆用户移动边缘计算任务卸载新方法,通过定义用户的任务计算卸载效用,综合考虑时耗和能耗,结合模拟退火机制,根据当前道路的密集程度对系统卸载效用进行优化,改变用户的卸载决策,选择在本地执行或者卸载到边缘服务器上执行,使得在给定的环境下的所有用户都能得到满足低时延高质量的服务。仿真结果表明,该算法在减少用户任务计算时间的同时降低了能量消耗。  相似文献   

8.
计算卸载作为移动边缘计算的关键技术之一,对于提升移动边缘计算实现节能、降低时延和改善用户体验等方面,起到关键的作用.本文围绕移动边缘计算的计算卸载技术进行分析研究,首先介绍了计算卸载概念和主要特征;并就移动边缘计算的计算卸载实施步骤和计算卸载系统分类进行阐述;然后针对计算卸载关键技术中的3个重点研究问题进行了详细分析;最后,对研究工作进行总结.  相似文献   

9.
李斌  徐天成 《电讯技术》2023,63(12):1894-1901
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。  相似文献   

10.
计算卸载作为移动边缘计算的关键技术之一,对于提升移动边缘计算实现节能、降低时延和改善用户体验等方面,起到关键的作用.本文围绕移动边缘计算的计算卸载技术进行分析研究,首先介绍了计算卸载概念和主要特征;并就移动边缘计算的计算卸载实施步骤和计算卸载系统分类进行阐述;然后针对计算卸载关键技术中的3个重点研究问题进行了详细分析;最后,对研究工作进行总结.  相似文献   

11.

由于车载应用的普及和车辆数量的增加,路边基础设施的物理资源有限,当大量车辆接入车联网时能耗与时延同时增加,通过整合内容分发网络(CDN)和移动边缘计算(MEC)的框架可以降低时延与能耗。在车联网中,车辆移动性对云服务的连续性提出了重大挑战。因此,该文提出了移动性管理(MM)来处理该问题。采用开销选择的动态信道分配(ODCA)算法避免乒乓效应且减少车辆在小区间的切换时间。采用基于路边单元(RSU)调度的合作博弈算法进行虚拟机迁移并开发基于学习的价格控制机制,以有效地处理MEC的计算资源。仿真结果表明,所提算法相比于现有的算法能够提高资源利用率且减少开销。

  相似文献   

12.

为了降低计算任务的时延和系统的成本,移动边缘计算(MEC)被用于车辆网络,以进一步改善车辆服务。该文在考虑计算资源的情况下对车辆网络时延问题进行研究,提出一种多平台卸载智能资源分配算法,对计算资源进行分配,以提高下一代车辆网络的性能。该算法首先使用K临近(KNN)算法对计算任务的卸载平台(云计算、移动边缘计算、本地计算)进行选择,然后在考虑非本地计算资源分配和系统复杂性的情况下,使用强化学习方法,以有效解决使用移动边缘计算的车辆网络中的资源分配问题。仿真结果表明,与任务全部卸载到本地或MEC服务器等基准算法相比,提出的多平台卸载智能资源分配算法实现了时延成本的显著降低,平均可节省系统总成本达80%。

  相似文献   

13.
移动边缘计算(MEC)通过在移动网络边缘提供IT服务环境和云计算能力带来高带宽、低时延优势,从而在下一代移动网络的研究中引起了广泛的关注。该文研究车载网络中车辆卸载请求任务时搜寻服务节点为其服务的匹配问题,构建一个基于MEC的卸载框架,任务既可以卸载到MEC服务器以车辆到基础设施(V2I)形式通信,也可以卸载到邻近车辆进行车辆到车辆(V2V)通信。考虑到资源有限性、异构性,任务多样性,建模该框架为组合拍卖模式,提出一种多轮顺序组合拍卖机制,由层次分析法(AHP)排序、任务投标、获胜者决策3个阶段组成。仿真结果表明,所提机制可以在时延和容量约束下,使请求车辆效益提高的同时最大化服务节点的效益。  相似文献   

14.

移动边缘计算(MEC)通过在无线网络边缘为用户提供计算能力,来提高用户的体验质量。然而,MEC的计算卸载仍面临着许多问题。该文针对超密集组网(UDN)的MEC场景下的计算卸载,考虑系统总能耗,提出卸载决策和资源分配的联合优化问题。首先采用坐标下降法制定了卸载决定的优化方案。同时,在满足用户时延约束下采用基于改进的匈牙利算法和贪婪算法来进行子信道分配。然后,将能耗最小化问题转化为功率最小化问题,并将其转化为一个凸优化问题得到用户最优的发送功率。仿真结果表明,所提出的卸载方案可以在满足用户不同时延的要求下最小化系统能耗,有效地提升了系统性能。

  相似文献   

15.
空天地异构网络作为一种新型网络构架,是未来6G实现泛在连接的关键支撑。该文提出一种面向空天地异构网络(SAGIN)的移动边缘计算部分任务卸载方案。首先,分析了低轨(LEO)卫星的覆盖时间。其次,联合考虑用户与无人机(UAV)匹配关联因子、任务分配、带宽分配、无人机计算资源分配以及无人机轨迹,旨在建立一个能耗最小化问题。最后,采用交替迭代优化算法,将原非凸问题分解为3个子问题,并利用变量替换和连续凸逼近方法将问题转化为凸问题进行求解。仿真结果表明,所提算法具有良好的收敛性能,并有效地降低系统能耗。  相似文献   

16.
现有车载应用设备对时延有更严苛的要求,车载边缘计算(VEC)能够充分利用网络边缘设备,如路边单元(RSU)进行协作处理,可有效地降低时延。现有研究多假设RSU计算资源充足,可提供无限的服务,但实际其计算资源会随着所需处理任务数量的增加而受限,对时延敏感的车载应用造成限制。该文针对此问题,提出一种车载边缘计算中多任务部分卸载方案,该方案在充分利用RSU的计算资源条件下,考虑邻近车辆的剩余可用计算资源,以最小化总任务处理时延。首先在时延限制和资源约束下分配各任务在本地、RSU和邻近车辆的最优卸载决策变量比例,其次以最小处理时延为目的在一跳通信范围内选择合适的空闲车辆作为处理部分任务的邻近车辆。仿真结果表明所提车载边缘计算中多任务部分卸载方案相较现有方案能较好地降低时延。  相似文献   

17.
针对移动边缘计算(MEC)任务卸载性能易受障碍物阻挡影响的问题,该文提出一种双智能超表面(RIS) 赋能的移动边缘计算任务部分卸载框架。首先,分析两个RIS之间的反射对链路增益的影响。其次,联合考虑终端用户的发射功率、终端用户的卸载速率、任务卸载量、卸载时间的分配以及RIS相移约束,旨在建立一个能耗最小化优化问题。最后,采用交替迭代算法,将原非凸问题分解为两个子问题,并利用Dinkelbach方法和最优性条件进行求解。仿真结果验证了所提算法的快速收敛特性以及在降低系统能耗方面的有效性。  相似文献   

18.
苏健  钱震  李斌 《电子与信息学报》2022,44(7):2416-2424
针对新兴的计算密集型应用对移动用户高计算性能需求问题,该文提出一种数字孪生(DT)结合智能反射面(RIS)辅助的移动边缘计算(MEC)任务卸载方案。首先,在满足用户传输功率、用户和资源设备能耗、计算资源限制条件下,通过联合优化用户卸载决策、用户传输功率、RIS 相移、波束成形矢量、计算资源分配,建立一个系统能耗最小化问题;其次,将该非凸组合优化问题分解为3个子问题,使用深度双Q网络(DDQN)方法确定用户卸载策略;然后对每个训练时间步进行一次求解,基于交替迭代方法得到问题的优化解。仿真结果表明,基于DDQN的算法训练速度较快,有效降低了系统总能耗。  相似文献   

19.

随着物联网(IoT)迅速发展,移动边缘计算(MEC)在提供高性能、低延迟计算服务方面的作用日益明显。然而,在面向IoT业务的MEC(MEC-IoT)时变环境中,不同边缘设备和应用业务在时延和能耗等方面具有显著的异构性,对高效的任务卸载及资源分配构成严峻挑战。针对上述问题,该文提出一种动态的分布式异构任务卸载算法(D2HM),该算法利用分布式博弈机制并结合李雅普诺夫优化理论,设计了一种资源的动态报价机制,并实现了对不同业务类型差异化控制和计算资源的弹性按需分配,仿真结果表明,所提的算法可以满足异构任务的多样化计算需求,并在保证网络稳定性的前提下降低系统的平均时延。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号