共查询到20条相似文献,搜索用时 109 毫秒
1.
提出了一种基于区域分割技术的硬件木马检测方法,通过电路设计和检测相结合的方式,在电路内植入能生成多种测试向量的自测试模块,且不同测试向量可使目标区域电路内部节点在工作时具有高、低翻转率的差异,采用区域独立供电网络设计及门控时钟控制区域分时工作等方法,提高由硬件木马产生的侧信道数据在整体电路侧信道数据中所占的比重,使含有硬件木马电路的侧信道数据与正常数据差异明显,从而更易于鉴别隐藏于电路中的硬件木马.仿真测试结果表明,本方法最高可检测出占总体电路规模0.3%的时序逻辑型硬件木马,与传统的硬件木马检测方式相比,明显提高了硬件木马检测的分辨率. 相似文献
2.
由于硬件木马种类的多样性和SoC电路制造过程中不可预测的工艺变化,硬件木马检测变得极具挑战性。现有的旁路信号分析法存在两个缺点,一是需要黄金模型作为参考,二是工艺波动会掩盖部分硬件木马的活动效果。针对上述不足,提出一种利用电路模块结构自相似性的无黄金模型检测方法。通过对32位超前进位加法器的软件仿真实验和对128位AES加密电路的硬件仿真实验,验证了该方法的有效性。实验结果表明,在45 nm工艺尺寸下,对于面积占比较小的硬件木马,该方法的检测成功率可以达到90.0%以上。 相似文献
3.
4.
5.
针对基于静态结构特征的机器学习方法对门级硬件木马检测结果检测率不高的问题,提出了一种基于级联结构特征的硬件木马检测方法。利用共现矩阵进行特征构建,并使用多对多结构的堆叠式长短期记忆网络(Long Short-Term Memory, LSTM)进行木马特征的训练与识别。实验结果表明,该方法在Trusthub的15个基准网表中获得了93.1%的平均真阳性率(TPR)、99.0%的平均真阴性率(TNR)和79.3%的F1-score。实验结果优于现有方法。 相似文献
6.
7.
8.
通常存在于应用软件、操作系统中的信息安全问题正在向硬件蔓延。硬件木马是集成电路芯片从研发设计、生产制造到封装测试的整个生命周期内被植入的恶意电路,一经诱发,将带来各种非预期的行为,造成重大危害。当前,SoC芯片大量复用IP核,意味着将有更多环节招致攻击;日益增长的芯片规模又使得硬件木马的检测变得更难、成本更高。因此,硬件木马的相关技术研究成为硬件安全领域的热点。介绍了硬件木马的概念、结构、植入途径和分类,对硬件木马的设计、检测和防御技术进行了分析、总结和发展趋势预测,着重分析了检测技术。 相似文献
9.
任立儒 《中国电子科学研究院学报》2011,6(2):140-142
现今的集成电路,在设计中就有可能植入恶意电路,这种恶意电路被称为硬件木马,硬件木马会影响系统的功能或将关键信息传输给对手.过去几年里这个问题已经获得了巨大关注.依据危害结果对硬件木马进行了分类,分为功能破坏型、性能劣化型、数据窃取型、后门预留型.作者介绍硬件木马的植入途径及其防范方法,硬件木马的危害;还介绍并分析了硬件... 相似文献
10.
11.
Hardware Trojans (HTs) can be implanted in security-weak parts of a chip with various means to steal the internal sensitive data or modify original functionality, which may lead to huge economic losses and great harm to society. Therefore, it is very important to analyze the specific HT threats existing in the whole life cycle of integrated circuits (ICs), and perform protection against hardware Trojans. In this paper, we elaborate an IC market model to illustrate the potential HT threats faced by the parties involved in the model. Then we categorize the recent research advances in the countermeasures against HT attacks. Finally, the challenges and prospects for HT defense are illuminated. 相似文献
12.
The involvement of external vendors in semiconductor industries increases the chance of hardware Trojan (HT) insertion in different phases of the integrated circuit (IC) design. Recently, several partial reverse engineering (RE) based HT detection techniques are reported, which attempt to reduce the time and complexity involved in the full RE process by applying machine learning or image processing techniques in IC images. However, these techniques fail to extract the relevant image features, not robust to image variations, complicated, less generalizable, and possess a low detection rate. Therefore, to overcome the above limitations, this paper proposes a new partial RE based HT detection technique that detects Trojans from IC layout images using Deep Convolutional Neural Network (DCNN). The proposed DCNN model consists of stacking several convolutional and pooling layers. It layer-wise extracts and selects the most relevant and robust features automatically from the IC images and eliminates the need to apply the feature extraction algorithm separately. To prevent the over-training of the DCNN model, a new stopping condition method and two new metrics, namely Accuracy difference measure (ADM) and Loss difference measure (LDM), are proposed that halts the training only when the performance of our model genuinely drops. Further, to combat the issue of process variations and fabrication noise generated during the RE process, we include noisy images with varying parameters in the training process of the model. We also apply the data augmentation and regularization techniques in the model to address the issues of underfitting and overfitting. Experimental evaluation shows that the proposed technique provides 99% and 97.4% accuracy on Trust-Hub and synthetic ISCAS dataset, respectively, which is on-an-average 15.83% and 21.69% higher than the existing partial RE based techniques. 相似文献
13.
14.
15.
Due to the globalized semiconductor business model, malicious hardware modifications, known as hardware Trojans (HTs), have risen up as a big concern for chip security. HT detection and mitigation methods for general integrated circuits have been investigated in the past decade. However, the majority of the existing efforts are not customized for HTs in Networks-on-Chip (NoCs). To complement the firmware and software level methods for rogue NoCs detection, we propose countermeasures to harden the NoC hardware design against tampering. More specifically, we propose a collaborative dynamic permutation and flit integrity check method to mitigate the potential inside-router HTs inserted by the disloyal member in the NoC design house or the 3rd-party system integration company. Our method improves the number of received packets by up to 70.1% over the other methods if the HT controls the NoC packet destination address. The average link availability of our method is 43.7% higher than that of the exiting methods. Our method increases the effective average latency by up to 63.4%, 68.2%, and 98.9% for the single HT in the destination, header, and tail fields, respectively, over the existing methods. 相似文献
16.
17.
针对恶意的第三方厂商在电路设计阶段中植入硬件木马的问题,该文提出一种基于XGBoost的混合模式门级硬件木马检测方法。该检测方法将电路的每个线网类型作为节点,采用混合模式3层级的检测方式。首先,基于提取的电路静态特征,利用XGBoost算法实现第1层级的检测。继而,通过分析扫描链的结构特征,对第1层级分离得到的正常电路继续进行第2层级的面向扫描链中存在木马电路的静态检测。最后,在第3层级采用动态检测方法进一步提升检测的准确性。Trust-Hub基准测试集的实测结果表明,该方法与现有的其他检测方法相比具有较优的木马检测率,可达到94.0%的平均真阳率(TPR)和99.3%的平均真阴率(TNR)。 相似文献
18.
入侵检测技术及其发展趋势 总被引:4,自引:0,他引:4
入侵检测是一个主动的和重要的网络安全研究领域,首先介绍了入侵检测系统的发展过程;阐述了入侵检测系统的功能、通用模型夏分类,并重点分析了入侵检测系统的各种入侵检测技术;最后指出了目前入侵检测系统面临的主要挑战,并提出了入侵检测技术的未来发展趋势。 相似文献
19.
硬件木马检测已成为当前芯片安全领域的研究热点,现有检测算法大多面向ASIC电路和FPGA电路,且依赖于未感染硬件木马的黄金芯片,难以适应于由大规模可重构单元组成的粗粒度可重构阵列电路。因此,该文针对粗粒度可重构密码阵列的结构特点,提出基于分区和多变体逻辑指纹的硬件木马检测算法。该算法将电路划分为多个区域,采用逻辑指纹特征作为区域的标识符,通过在时空两个维度上比较分区的多变体逻辑指纹,实现了无黄金芯片的硬件木马检测和诊断。实验结果表明,所提检测算法对硬件木马检测有较高的检测成功率和较低的误判率。 相似文献
20.
近几年来,Android手机木马病毒发展迅速,Android手机安全问题成为大家关注的焦点,基于Android的木马检测引擎的研究与实现变得日益迫切。为此,提出了一套特征码提取检测算法(FCPA),FCPA通过调用Android系统库函数获取恶意文件的源路径,利用源路径找到相应文件并对文件进行散列处理,获取文件特征信息,生成一个唯一标识该木马病毒的特征值,然后构建特征码库。同时,设计并实现了木马检测引擎,其利用特征码提取算法快速扫描并检测出手机应用程序中的恶意程序。实验结果表明,该木马检测引擎能够有效检测恶意应用。 相似文献