共查询到19条相似文献,搜索用时 62 毫秒
1.
在新兴的车联网络中,汽车终端请求卸载的任务对网络带宽、卸载时延等有着更加严苛的需求,而新型通信网络研究中移动边缘计算(MEC)的提出更好地解决了这一挑战。该文着重解决的是汽车终端进行任务卸载时卸载对象的匹配问题。文中引入了软件定义车载网络(SDN-V)对全局变量统一调度,实现了资源控制管理、设备信息采集以及任务信息分析。基于用户任务的差异化性质,定义了重要度的模型,在此基础上,通过设计任务卸载优先级机制算法,实现任务优先级划分。针对多目标优化模型,采用乘子法对非凸优化模型进行求解。仿真结果表明,与其他卸载策略相比,该文所提卸载机制对时延和能耗优化效果明显,能够最大程度地保证用户的效益。 相似文献
2.
针对边缘计算与内容分发网络(CDN)边缘节点如何实现资源协同的问题,文章提出了CDN缓存软件适配虚拟机和容器的技术与方法.通过对比分析物理机、容器和虚拟机3种部署模式下CDN的性能测试数据,评估了CDN虚拟化带来的性能损耗.容器模式性能损耗较小,其性能与物理机相当;而虚拟机模式性能损耗较大,其性能相当于物理机的75%左... 相似文献
3.
本文首先介绍了移动流媒体内容分发网络(MSM-CDN)的概念和特点;然后重点介绍了MSM-CDN的系统结构,并介绍了与MSM-CDN相关的一系列研究方向;最后探讨了MSM-CDN在移动数据通信中的发展现状与前景。 相似文献
4.
内容分发网络(Content Delivery Network,CDN)构建在IP承载网络之上,使用户就近访问内容,降低业务访问时延,是典型边缘计算业务,统筹建设内容分发网络与移动边缘云是未来网络发展目标。针对内容分发网络及移动边缘云的发展现状,结合网络特点、网络架构分析了内容分发网络、移动边缘云建设方案,为网络协同建设提供思路。 相似文献
5.
为了有效利用边缘云的计算资源,尽可能降低任务卸载时的平均等待时延,提出了一种满足边缘计算服务器容限阈值和任务卸载成功率约束条件下的多个边缘计算服务器相互协作的资源分配方案,通过单位时间总代价指标优化边缘计算服务器个数.将此方案建模为一个整数优化问题,之后设计了一种最小代价算法求解此优化问题,得到约束条件下的单位时间总代... 相似文献
6.
首先介绍了移动社会网络的概念,论述了移动社会网络部件、分类以及移动社会网络架构。然后简要概括了移动社会网络在应用、体系结构、协议设计等方面存在的挑战,重点分析了在内容分发机制方面的研究进展以及简单概述了社区检测、移动模型和中间件。最后对移动社会网络内容分发机制进行了总结。 相似文献
7.
文章基于移动边缘计算相关研究,参考现网主要架构,针对车联网中大数据量和低时延要求提出了移动边缘计算服务器在现网中的部署位置和具体架构、数据传输流程,通过流量分流网关进行流量分流,然后经解包后把车联网数据发送至平台处理,反馈信息也由相同链路传送回终端. 相似文献
8.
随着智能交通的快速发展,车辆终端产生大量需要实时处理的数据消息,而在有限资源上的竞争将会增加消息处理的时延,且对终端设备造成很大的能量消耗。针对时延和能量损耗的均衡关系,该文提出一种基于移动边缘计算(MEC)的内容感知分类卸载算法。首先根据层次分析法对安全消息进行优先级划分,然后建立时延和能量损耗的最优任务卸载模型,通过给时延和能量损耗赋予不同的权重系数构造关系模型,并利用拉格朗日松弛法将非凸问题转化为凸问题,从而结合次梯度投影法和贪婪算法得到问题的可行解。性能评估结果表明,该算法在一定程度上改善了消息处理时延和能量损耗。 相似文献
9.
近年来移动互联网、工业互联网的快速发展,引发媒体计算与服务的一个新的趋势:以视频为代表的多媒体数据的产生、处理和分发越来越多地趋向网络边缘。复杂应用环境下,用户行为、系统资源的不确定性成为网络视频服务面临的重大挑战。如何引入人工智能与机器学习的方法,利用网络边缘的计算、存储和网络资源实现视频内容分发随需而动,从而支撑更低延迟、更高带宽需求的网络视频服务,逐渐成为新的研究和应用热点。该综述分析了基于边缘计算的视频分发所面临的挑战,提出了通过边缘计算的网络、存储和计算能力来进行视频内容分发的框架,并在此框架下给出了边缘缓存及替换、边缘内容预取、边缘内容收集和边缘计算迁移等视频分发的优化策略设计。 相似文献
10.
本文针对移动端视频服务特性,设计了基于用户内容偏好和移动行为感知的网络边缘节点内容分发优化策略,该优化策略能够快速响应移动端用户兴趣,大大减少主干网络带宽资源的消耗,同时提升了用户的收视体验,有利于广电网络运营商优化网络配置并提升服务质量。 相似文献
11.
为了降低计算任务的时延和系统的成本,移动边缘计算(MEC)被用于车辆网络,以进一步改善车辆服务。该文在考虑计算资源的情况下对车辆网络时延问题进行研究,提出一种多平台卸载智能资源分配算法,对计算资源进行分配,以提高下一代车辆网络的性能。该算法首先使用K临近(KNN)算法对计算任务的卸载平台(云计算、移动边缘计算、本地计算)进行选择,然后在考虑非本地计算资源分配和系统复杂性的情况下,使用强化学习方法,以有效解决使用移动边缘计算的车辆网络中的资源分配问题。仿真结果表明,与任务全部卸载到本地或MEC服务器等基准算法相比,提出的多平台卸载智能资源分配算法实现了时延成本的显著降低,平均可节省系统总成本达80%。 相似文献
12.
移动边缘计算(MEC)通过在无线网络边缘为用户提供计算能力,来提高用户的体验质量。然而,MEC的计算卸载仍面临着许多问题。该文针对超密集组网(UDN)的MEC场景下的计算卸载,考虑系统总能耗,提出卸载决策和资源分配的联合优化问题。首先采用坐标下降法制定了卸载决定的优化方案。同时,在满足用户时延约束下采用基于改进的匈牙利算法和贪婪算法来进行子信道分配。然后,将能耗最小化问题转化为功率最小化问题,并将其转化为一个凸优化问题得到用户最优的发送功率。仿真结果表明,所提出的卸载方案可以在满足用户不同时延的要求下最小化系统能耗,有效地提升了系统性能。 相似文献
13.
针对移动边缘计算(MEC)任务卸载性能易受障碍物阻挡影响的问题,该文提出一种双智能超表面(RIS) 赋能的移动边缘计算任务部分卸载框架。首先,分析两个RIS之间的反射对链路增益的影响。其次,联合考虑终端用户的发射功率、终端用户的卸载速率、任务卸载量、卸载时间的分配以及RIS相移约束,旨在建立一个能耗最小化优化问题。最后,采用交替迭代算法,将原非凸问题分解为两个子问题,并利用Dinkelbach方法和最优性条件进行求解。仿真结果验证了所提算法的快速收敛特性以及在降低系统能耗方面的有效性。 相似文献
14.
针对无线供能移动边缘计算(MEC)网络,该文将计算时延定义为数据卸载与计算所消耗的时间,并提出一种节点计算时延之和最小化的多维资源分配方法。首先,在节点能量因果约束下,通过联合优化专用能量站工作时长、任务分割系数、节点计算频率和发射功率来建立一个计算时延之和最小化的多维资源分配问题。由于存在优化变量耦合与max-max函数,所建问题非凸且无法采用凸优化工具获取最优解。为此,通过引入一系列松弛变量和辅助变量来进行优化问题简化以及优化变量解耦,并在此基础上,通过深入分析简化问题的结构特性,提出一种基于二分法的迭代算法来求解原问题的最优解。最后,计算机仿真验证了所提迭代算法的正确性以及所提资源分配方法在计算时延方面的优越性。 相似文献
15.
现有车载应用设备对时延有更严苛的要求,车载边缘计算(VEC)能够充分利用网络边缘设备,如路边单元(RSU)进行协作处理,可有效地降低时延。现有研究多假设RSU计算资源充足,可提供无限的服务,但实际其计算资源会随着所需处理任务数量的增加而受限,对时延敏感的车载应用造成限制。该文针对此问题,提出一种车载边缘计算中多任务部分卸载方案,该方案在充分利用RSU的计算资源条件下,考虑邻近车辆的剩余可用计算资源,以最小化总任务处理时延。首先在时延限制和资源约束下分配各任务在本地、RSU和邻近车辆的最优卸载决策变量比例,其次以最小处理时延为目的在一跳通信范围内选择合适的空闲车辆作为处理部分任务的邻近车辆。仿真结果表明所提车载边缘计算中多任务部分卸载方案相较现有方案能较好地降低时延。 相似文献
16.
移动边缘计算(MEC)通过在移动网络边缘提供IT服务环境和云计算能力带来高带宽、低时延优势,从而在下一代移动网络的研究中引起了广泛的关注。该文研究车载网络中车辆卸载请求任务时搜寻服务节点为其服务的匹配问题,构建一个基于MEC的卸载框架,任务既可以卸载到MEC服务器以车辆到基础设施(V2I)形式通信,也可以卸载到邻近车辆进行车辆到车辆(V2V)通信。考虑到资源有限性、异构性,任务多样性,建模该框架为组合拍卖模式,提出一种多轮顺序组合拍卖机制,由层次分析法(AHP)排序、任务投标、获胜者决策3个阶段组成。仿真结果表明,所提机制可以在时延和容量约束下,使请求车辆效益提高的同时最大化服务节点的效益。 相似文献
17.
空天地异构网络作为一种新型网络构架,是未来6G实现泛在连接的关键支撑。该文提出一种面向空天地异构网络(SAGIN)的移动边缘计算部分任务卸载方案。首先,分析了低轨(LEO)卫星的覆盖时间。其次,联合考虑用户与无人机(UAV)匹配关联因子、任务分配、带宽分配、无人机计算资源分配以及无人机轨迹,旨在建立一个能耗最小化问题。最后,采用交替迭代优化算法,将原非凸问题分解为3个子问题,并利用变量替换和连续凸逼近方法将问题转化为凸问题进行求解。仿真结果表明,所提算法具有良好的收敛性能,并有效地降低系统能耗。 相似文献
18.
移动边缘计算(MEC)通过在用户近端以虚拟机(VM)形式部署应用服务,能有效降低服务响应延迟并减少核心网络数据流量。然而,当前MEC中虚拟机部署的大多数研究尚未具体考虑用户对多种应用服务的需求。因此,该文针对MEC中多应用服务的虚拟机部署问题,提出两种启发式算法,即基于适应度的启发式部署算法(FHPA)和基于分治的启发式部署算法(DCBHPA),通过在边缘网络中配置支持多种应用服务的虚拟机来最大限度地减少网络中的数据流量。FHPA和DCBHPA分别基于边缘服务器的网络连接特征和用户对应用请求的差异性,定义了不同的适应度计算模型。在此基础上,通过子问题划分机制实现VM配置。仿真结果表明,相比于基准算法,所提算法能更好地控制系统数据流量,有效地提高边缘网络服务资源的利用率。 相似文献
19.
物联网数据的快速增长和物联网设备的计算限制催生了移动边缘计算(Mobile Edge Computing, MEC)解决方案。其中,无人机群的高机动性、易部署以及成本低的特点和多输入多输出(Multiple Input Multiple Output, MIMO)技术能够增强边缘计算网络的传输容量,缩短边缘计算网络的传输时延。该文在基于多无人机的多用户MIMO-MEC系统中通过联合优化无人机轨迹、地面用户卸载比、辅助无人机卸载比和辅助无人机数据分发比最小化整个周期的系统最大总时延。采用了连续凸优化技术和块坐标下降方法来解决其中的非凸问题。仿真结果讨论了影响系统时延的因素,并验证了算法的有效性及收敛性。 相似文献
|