首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
车载边缘计算卸载技术研究综述   总被引:1,自引:0,他引:1  
刘雷  陈晨  冯杰  肖婷婷  裴庆祺 《电子学报》2021,49(5):861-871
通过将移动边缘计算技术应用在车联网,车载边缘计算技术可为车载用户提供低时延、高带宽、高可靠性的应用服务.首先详细介绍了车载边缘计算卸载技术的背景、意义以及本文的贡献.其次,分别概述了车载边缘计算卸载技术的网络架构、主要挑战以及应用场景.然后,从移动分析、卸载模式、资源协作和管理等多个维度全面综述了车载边缘计算卸载技术的...  相似文献   

2.
现有车载应用设备对时延有更严苛的要求,车载边缘计算(VEC)能够充分利用网络边缘设备,如路边单元(RSU)进行协作处理,可有效地降低时延。现有研究多假设RSU计算资源充足,可提供无限的服务,但实际其计算资源会随着所需处理任务数量的增加而受限,对时延敏感的车载应用造成限制。该文针对此问题,提出一种车载边缘计算中多任务部分卸载方案,该方案在充分利用RSU的计算资源条件下,考虑邻近车辆的剩余可用计算资源,以最小化总任务处理时延。首先在时延限制和资源约束下分配各任务在本地、RSU和邻近车辆的最优卸载决策变量比例,其次以最小处理时延为目的在一跳通信范围内选择合适的空闲车辆作为处理部分任务的邻近车辆。仿真结果表明所提车载边缘计算中多任务部分卸载方案相较现有方案能较好地降低时延。  相似文献   

3.
解决计算密集型任务与车载计算设备资源匮乏之间的矛盾,目前常用的一种解决方案是将计算任务卸载到无线电接入网络的边缘.本文研究了车载边缘计算下的基于移动感知的计算任务卸载模型.考虑到车辆的移动性特性和任务的最大等待时间,本文通过联合优化任务卸载决策,通信和计算资源分配,使车辆选择最佳的卸载执行时间,以达到最大限度地降低系统...  相似文献   

4.
计算卸载作为移动边缘计算的关键技术之一,对于提升移动边缘计算实现节能、降低时延和改善用户体验等方面,起到关键的作用.本文围绕移动边缘计算的计算卸载技术进行分析研究,首先介绍了计算卸载概念和主要特征;并就移动边缘计算的计算卸载实施步骤和计算卸载系统分类进行阐述;然后针对计算卸载关键技术中的3个重点研究问题进行了详细分析;最后,对研究工作进行总结.  相似文献   

5.
计算卸载作为移动边缘计算的关键技术之一,对于提升移动边缘计算实现节能、降低时延和改善用户体验等方面,起到关键的作用.本文围绕移动边缘计算的计算卸载技术进行分析研究,首先介绍了计算卸载概念和主要特征;并就移动边缘计算的计算卸载实施步骤和计算卸载系统分类进行阐述;然后针对计算卸载关键技术中的3个重点研究问题进行了详细分析;最后,对研究工作进行总结.  相似文献   

6.
随着计算密集和时延敏感型车辆应用的爆炸式增长,集中式云架构产生了高工作负载和任务时延阻塞。为了保证服务质量,车载边缘计算应运而生,这种计算模式将计算能力和存储资源,推移到离数据源更近的边缘服务器或边缘网关等边缘节点上,通过在边缘节点进行实时数据处理和决策,可以显著地减少数据传输时延。首先介绍了车载边缘计算的基本概念,接着对现有研究进行了梳理分类,最后讨论了对车载边缘计算的展望和未来研究方向。  相似文献   

7.
移动边缘计算(Mobile Edge Computing,MEC)将云服务器的计算资源扩展到更靠近用户一侧的网络边缘,使得用户可以将任务卸载到边缘服务器,从而克服原先云计算中将任务卸载到云服务器所带来的高时延问题。首先介绍了移动边缘计算的基本概念、基本框架和应用场景,然后围绕卸载决策、联合资源分配的卸载决策分别从单MEC服务器和多MEC服务器两种场景总结了任务卸载技术的研究现状,最后结合当前MEC卸载技术中存在的不足展望了未来MEC卸载技术的研究。  相似文献   

8.
提出了基于安全管理的边缘计算卸载方案,并基于量子进化算法(QEA)设计了卸载决策方案。该方案保证了用户在边缘计算网络中进行计算卸载的安全性。仿真结果表明,与常规计算卸载方案对比,本方案能在保证计算卸载安全的情况下有效降低整个系统的开销。  相似文献   

9.
陈彬 《中国新通信》2023,(20):32-34
随着移动设备和互联网的普及,近年来人们对计算能力和网络资源的需求显著增加。为了降低网络延迟、提高用户体验,移动边缘计算(MEC)应运而生,将云计算与边缘计算相结合成为解决方案。MEC通过将计算资源移动到靠近终端用户的位置来实现这一目的。然而,随着移动设备数量和生成数据量的增加,对MEC网络中的计算资源分配进行优化。其中计算卸载是一种实现方式,它将资源密集型任务从移动设备转移到MEC服务器,以便更高效地处理。故此,本文主要分析了适用于MEC网络的不同计算卸载策略,以期为后续的相关研究和工作开展提供帮助。  相似文献   

10.
在车联网(IOV)环境中,如果将车辆的计算任务都放置在云平台执行,无法满足对于信息处理的实时性,考虑移动边缘计算技术以及任务卸载策略,将用户的计算任务卸载到靠近设备边缘的服务器去执行。但是在密集的环境下,如果所有的任务都卸载到附近的边缘服务器去执行,同样会给边缘服务器带来巨大的负载。该文提出基于模拟退火机制的车辆用户移动边缘计算任务卸载新方法,通过定义用户的任务计算卸载效用,综合考虑时耗和能耗,结合模拟退火机制,根据当前道路的密集程度对系统卸载效用进行优化,改变用户的卸载决策,选择在本地执行或者卸载到边缘服务器上执行,使得在给定的环境下的所有用户都能得到满足低时延高质量的服务。仿真结果表明,该算法在减少用户任务计算时间的同时降低了能量消耗。  相似文献   

11.
李斌  徐天成 《电讯技术》2023,63(12):1894-1901
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。  相似文献   

12.
空天地异构网络作为一种新型网络构架,是未来6G实现泛在连接的关键支撑。该文提出一种面向空天地异构网络(SAGIN)的移动边缘计算部分任务卸载方案。首先,分析了低轨(LEO)卫星的覆盖时间。其次,联合考虑用户与无人机(UAV)匹配关联因子、任务分配、带宽分配、无人机计算资源分配以及无人机轨迹,旨在建立一个能耗最小化问题。最后,采用交替迭代优化算法,将原非凸问题分解为3个子问题,并利用变量替换和连续凸逼近方法将问题转化为凸问题进行求解。仿真结果表明,所提算法具有良好的收敛性能,并有效地降低系统能耗。  相似文献   

13.

针对车联网业务的低时延、低功耗需求及海量设备计算卸载引起的网络拥塞问题,该文提出一种在云雾混合网络架构下的联合计算卸载、计算资源和无线资源分配算法(JODRAA)。首先,该算法考虑将云计算与雾计算结合,以最大时延作为约束,建立最小化系统能耗和资源成本的资源优化模型。其次,将原问题转化为标准二次约束二次规划(QCQP)问题,并设计一种低复杂度的联合卸载决策和计算资源分配算法。进一步,针对海量设备计算卸载引起的网络拥塞问题,建立卸载用户接入请求队列的上溢概率估计模型,提出一种基于在线测量的雾节点时频资源配置算法。最后,借助分式规划理论和拉格朗日对偶分解方法得到迭代的带宽和功率分配策略。仿真结果表明,该文算法可以在满足时延需求的前提下,最小化系统能耗和资源成本。

  相似文献   

14.
基于单一边缘节点计算、存储资源的有限性及大数据场景对高效计算服务的需求,本文提出了一种基于深度强化学习的云边协同计算迁移机制.具体地,基于计算资源、带宽和迁移决策的综合性考量,构建了一个最小化所有用户任务执行延迟与能耗权重和的优化问题.基于该优化问题提出了一个异步云边协同的深度强化学习算法,该算法充分利用了云边双方的计...  相似文献   

15.
针对移动边缘计算(MEC)任务卸载性能易受障碍物阻挡影响的问题,该文提出一种双智能超表面(RIS) 赋能的移动边缘计算任务部分卸载框架。首先,分析两个RIS之间的反射对链路增益的影响。其次,联合考虑终端用户的发射功率、终端用户的卸载速率、任务卸载量、卸载时间的分配以及RIS相移约束,旨在建立一个能耗最小化优化问题。最后,采用交替迭代算法,将原非凸问题分解为两个子问题,并利用Dinkelbach方法和最优性条件进行求解。仿真结果验证了所提算法的快速收敛特性以及在降低系统能耗方面的有效性。  相似文献   

16.

在新兴的车联网络中,汽车终端请求卸载的任务对网络带宽、卸载时延等有着更加严苛的需求,而新型通信网络研究中移动边缘计算(MEC)的提出更好地解决了这一挑战。该文着重解决的是汽车终端进行任务卸载时卸载对象的匹配问题。文中引入了软件定义车载网络(SDN-V)对全局变量统一调度,实现了资源控制管理、设备信息采集以及任务信息分析。基于用户任务的差异化性质,定义了重要度的模型,在此基础上,通过设计任务卸载优先级机制算法,实现任务优先级划分。针对多目标优化模型,采用乘子法对非凸优化模型进行求解。仿真结果表明,与其他卸载策略相比,该文所提卸载机制对时延和能耗优化效果明显,能够最大程度地保证用户的效益。

  相似文献   

17.
针对移动边缘计算(MEC)中用户的卸载任务及卸载频率可能使用户被攻击者锁定的问题,该文提出一种基于k-匿名的隐私保护计算卸载方法。首先,该方法基于用户间卸载任务及其卸载频率的差异性,提出隐私约束并建立基于卸载频率的隐私保护计算卸载模型;然后,提出基于模拟退火的隐私保护计算卸载算法(PCOSA)求得最优的k-匿名分组结果和组内各任务的隐私约束频率;最后,在卸载过程中改变用户原始卸载频率满足隐私约束,最小化终端能耗。仿真结果表明,PCOSA算法能找出用户所处MEC节点下与用户卸载表现最相近的k个用户形成匿名集,有效保护了所有用户隐私。  相似文献   

18.
近年来,随着入网设备数量与数据体量的急剧增加,以云计算为代表的中心式计算模式的缺点越来越显露出来。边缘计算,即让计算尽量靠近数据源,以减少数据传输时间和网络延迟,作为云计算的补充,已经成为学术界和工业界关注的焦点。该文面向边缘计算中应用较广的实例架构—云边端架构,以及边缘计算的典型应用—边缘智能计算,讨论云边端架构下边缘智能计算的两大关键问题:计算优化和计算卸载。首先分析和梳理了云边端架构下边缘智能计算优化的应用与研究现状。然后讨论了云边端架构下计算卸载的研究思路和现状。最后,总结提出了目前云边端架构下边缘智能计算业务所面临的挑战和未来研究趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号