共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
近十年来新生儿疼痛引起医护人员的广泛关注。由于新生儿不能自述疼痛的感受,疼痛评估成为新生儿科学中最具挑战性的一个难题。新生儿“疼痛面容”(蹙眉、挤眼、鼻唇沟加深、张口)被认为是最可靠的疼痛指标,且持续时间最长,因而被国际上常用的新生儿疼痛评估工具作为评估指标。然而,这些疼痛评估工具往往受到临床医护人员主观因素的影响。文中旨在解决上述问题,提出利用支持向量机(SVM)技术对新生儿疼痛与非疼痛面部表情进行分类识别。对210幅照片的表情图像进行了研究,比较了线性核函数SVM、多项式核函数SVM(d=2,3,4)以及径向基函数SVM等5种不同分类器的性能。实验结果表明,阶数d=3的多项式核函数SVM分类器的性能最佳,对疼痛和非疼痛表情分类的识别率达到93.33%,对疼痛与安静表情的分类识别率为94.17%,对疼痛与哭表情的分类识别率为83.13%,初步具备了在新生儿疼痛评估中的潜在应用价值。 相似文献
4.
本文提出了一种热轧板形缺陷分类识别方法,利用支持向量机(SVM)多分类方法中的一对一策略实现了对常见几种板形缺陷的识别,并使用网格搜索法对参数进行了优化。仿真实验证明,该方法行之有效。 相似文献
5.
6.
SVM在车牌字符识别中的应用 总被引:2,自引:0,他引:2
采用支持向量机方法实现车牌字符识别.根据车牌字符排列特征,构造了汉字、数字、字母、数字 字母4个最佳分类器,通过车牌字符的序号对每个字符进行对应识别,再将识别结果组合得到车牌号码.实验结果表明该方法具有较高的车牌字符整体识别率,达到了98.33%,识别时间仅为15ms,能够满足实际应用. 相似文献
7.
二叉树支持向量机(SVM)是一种针对多类问题的有效分类器,具有结构简单、训练快的特点,但二叉树SVM容易出现误差积累,且不能输出识别结果的置信度。文中设计了一种基于隶属度计算的二叉树SVM分类器,首先,该分类器利用方差和最小准则选择节点,将多类问题转化为偏二叉树SVM分类问题,避免了误差积累,然后,利用特征变换空间的类中心和类半径,计算出样本结果的置信度,使得二叉树SVM分类器能够输出模糊结果。将上述二叉树SVM分类器应用于弹道目标的RCS特征识别,仿真结果表明了该方法的有效性。 相似文献
8.
一些大家被所熟知的基于TOA,TDOA,AOA,RSSI等室内定位的方法已经被研究了多年,虽然有些难点还未能攻克,但已经钻研得比较成熟了,而电力线高速数据通信技术是一个正在发展中的崭新学科,可以尝试将其与室内定位结合起来作为一个新兴的领域,开启室内定位的另一个新的天地。本研究将根据现有的电力线通讯技术为基础,提出基于电力线的室内定位技术,并对其进行了较深入、系统的研究,并针对定位准确度、移动设备环境影响方面存在的问题,采用人工智能和数据挖掘理论,提出了相应的解决方案。通过算法比较和实验分析,证明了方案的有效性和可行性。从支持向量机方法入手,安装支持向量机相关的插件,对样本信号强度数据进行分类和预测,并比较一般支持向量机和最小二乘向量机的分类预测效果,结果表明,最小二乘向量机的效果较好。 相似文献
9.
10.
11.
12.
支持向量机方法在文本分类中的改进 总被引:2,自引:0,他引:2
提出了一种应用于文本分类的KNN和SVM相结合的算法,将SVM近似看成每类只有一个代表点的1NN分类器,对于待识别样本,如果其离支持向量机的最优分界面较远,则用SVM分类;如果其离分界面较近,采用KNN对测试样本分类,将每个支持向量作为代表点,计算待识别样本和每个支持向量的距离对其作出判断.该算法综合了KNN和SVM在分类问题中的优势,既有效地降低了分类候选的数目,又提高了文本分类的精度.最后用实验验证了该算法的有效性. 相似文献
13.
14.
提出一种基于支持向量机的实际调制信号自动识别新方法。利用支持向量机把分类特征向量映射到一个高维空间,并在高维空间中构造最优分类超平面以实现信号分类。计算机仿真结果表明,该方法对实际采集的信号具有很好的分类性能。 相似文献
15.
16.
17.
提出了一种基于HHT和支持向量机的实际数字调制信号识别算法。首先介绍了HHT方法的基本原理,对三种数字调制信号进行分析,提出用于识别实际FSK,PSK和QAM信号的特征参数,然后运用支持向量机算法分类三种数字调制信号,仿真结果表明,在信噪比10dB时,识别率达95%以上。 相似文献
18.
基于径向基小波核的多尺度小波支持向量机 总被引:6,自引:0,他引:6
普通支持向量机(SVM)方法用于多尺度回归建模时不能取得满意的精度,而现有的多尺度SVM算法存在只适合均匀分布的样本并可能收敛于局部极值等问题.为解决上述问题,本文提出了一种基于径向基小波核的多尺度小波支持向量机学习算法.文中提出并证明了一种新的径向基小波支持向量核,可提高小波SVM的训练速度和逼近精度.在此基础上,通过解一个二次优化问题可求出多尺度回归建模问题的全局最优解.最终得出的多尺度回归模型能够有效地逼近多尺度信号.仿真结果验证了所提算法的有效性. 相似文献
19.
基于SMO的不同惩罚系数的SVM算法 总被引:1,自引:0,他引:1
非平衡数据集的分类问题经常出现在许多实际应用中。支持向量机在处理这一类问题时,整体分类性能比较低。为此,Veropoulos提出的采用不同惩罚系数的改进算法可以较好的解决此类问题。此外,可以利用序列最小优化算法简单快速的解决上述优化问题。 相似文献