共查询到20条相似文献,搜索用时 15 毫秒
1.
通过计算流体动力学数值模拟,探索点燃型预燃室在大缸径(320mm)甲醇发动机上的应用效果,计算了过量空气系数和点火正时对燃烧和性能的影响。结果表明,点燃型预燃室发动机的燃烧放热过程先缓后急,热效率较高,NOx排放很低,SOx排放为零,不经后处理即可满足国际海事组织Tier Ⅲ排放法规。随着缸内过量空气系数的增加,缸内压力、压力升高率、声响强度和NOx排放均显著降低,指示热效率先升后降,在过量空气系数为2.4时达到最高值49.2%;随着点火正时的延迟,缸内压力、压力升高率、声响强度、指示热效率逐渐下降,NOx排放先减后增。基于计算结果,提出了一种燃烧控制策略:在平均有效压力低于1.8MPa时控制缸内过量空气系数为2.4并匹配较早的点火正时,在平均有效压力高于1.8MPa时控制过量空气系数为2.1并匹配较晚的点火正时。采用该策略可使部分负荷热效率最佳,且整机具有较高的动力性。 相似文献
2.
3.
预燃室参数对大缸径天然气发动机燃烧过程影响的研究 总被引:1,自引:1,他引:1
在对大缸径天然气发动机燃烧系统开发的过程中,设计了小容积预燃室加浅盆型主燃室的燃烧系统,之间通过8个直径2mm的均匀布置的通道连接,针对2种角度的布置结构进行数值模拟及试验分析。通过简化的甲烷反应动力学模型模拟分析了主燃室内的燃烧过程。分析结果表明:大的连接通道夹角有利于加快燃烧室径向的火焰传播速度,但主燃室中心部位燃烧较慢;小夹角的方案则相反。单缸试验机上的试验也得到了相同的结果,并证明大夹角通道方案有较好的抗爆震性能和排放性能。 相似文献
4.
基于一台四冲程单缸发动机开展湍流射流点火甲醇发动机的性能表现和燃烧特性研究。结果表明,湍流射流点火(turbulent jet ignition,TJI)燃烧模式放热率(heat release rate,HRR)曲线呈现“双峰”现象,放热率峰值明显高于火花塞点火(spark ignition,SI)模式,且具有更短的燃烧持续期。过量空气系数λ=1.0时,预燃室内不喷射甲醇的被动式TJI模式的平均指示压力略低于SI模式,指示燃油消耗率略高于SI模式。对于主动式TJI燃烧模式,λ=1.5,预燃室甲醇喷射时刻为压缩上止点前180°曲轴转角,喷射脉宽保持在350μs~600μs之间时,TJI甲醇发动机燃烧稳定性较好,同时动力性与经济性均有所提升。 相似文献
5.
预燃室式火花点火天然气发动机燃烧模型 总被引:2,自引:1,他引:2
由于全球能源和环保的要求,预燃室式火点火天然气发动机近十年来得到迅速发展。在实验研究方面已经取得很大进展,但得燃烧模型方面,目前尚未见到有报道。 相似文献
6.
基于一台单缸汽油发动机,设计了主动预燃室系统,试验了预燃室混合气状态对燃烧及排放的影响,通过对比不同点火能量的火花塞点火和预燃室点火,明确预燃室射流点火对燃烧过程影响机理.结果表明:随着预燃室内喷油量的增加,颗粒物数量(PN)排放增加;预燃室内浓混合气能改善燃烧相位、加快燃烧速度,提高点火性能,但预燃室内当量比附近的混合气有更大的节油潜力.当全局过量空气系数φglobal小于1.4时,预燃室点火燃油消耗率恶化;当φglobal大于1.4时,预燃室改善热效率的能力开始凸显.当预燃室中燃油量占总循环油量的分数为2%时,预燃室点火能将稀燃极限扩展至φglobal为2.1,在φglobal为1.8时总指示热效率达到48.5%的最大值. 相似文献
7.
8.
9.
为了研究预燃室点火技术的稀燃点火能力及预燃室点火技术对发动机性能的影响,用热力学单缸机试验的方法对比研究了不同点火方式的点火能力,并研究了预燃室点火条件下,进排气相位、滚流气道、预燃室设计对发动机性能的影响。研究结果表明:与传统的火花塞点火线圈点火方式相比,主动预燃室点火能量大,能稳定点燃λ>2.4的均质稀燃混合气,有效拓展稀燃极限;在预燃室点火条件下,通过优化进排气相位和滚流气道,结合合理的预燃室设计参数及发动机工况点的优化能提升热效率,试验测试已实现52.5%的指示热效率。 相似文献
10.
为解决大缸径气体机燃烧不稳定问题,在大缸径气体机上进行普通火花塞、预燃室式火花塞性能对比试验,及3种预燃室式火花塞对气体机性能影响的对比试验。结果表明:采用预燃室式火花塞可以拓展气体机稀燃极限,大幅提高发动机燃烧稳定性,平均指示压力波动率和最大缸内爆发压力波动率降低约45%,缸内燃烧速度加快,热效率提高约0.5%,涡前排气温度降低约15℃;预燃室式火花塞喷孔直径和数量对气体机燃烧的滞燃期影响较大,较小的喷孔直径更有利于缩短滞燃期,增大喷孔直径导致失火率上升,喷孔数量对失火率影响较小,喷孔直径和数量对燃烧持续期、燃气消耗率和NOx排放影响较小。 相似文献
11.
12.
《内燃机与动力装置》2016,(1):19-22
为了改善天然气发动机的燃烧过程和性能,在不对整个燃烧系统进行大的更改的前提下,开发了一种单独进气预燃室。该预燃室内在较高浓度混合气状态下,着火时产生的能量使主燃烧室内的燃料与空气迅速进行混合并快速充分地燃烧。试验结果表明,所设计的单独进气预燃室可加快燃烧速度,缩短燃烧周期,改善发动机性能,降低排放污染,具有推广应用价值。 相似文献
13.
14.
以船用预燃室式天然气发动机为研究对象,以点火正时(SOI)和过量空气系数(φa)为变量开展缸内稀薄燃烧特性影响规律的研究.在此基础上对试验数据开展主效应和帕累托分析,得出量化的规律性结果.结果表明:一方面,影响着火延迟和燃烧放热速率权重较大的为SOI,通过优化可以将滞燃期缩短至12°CA以内,将燃烧重心控制在14°CA ATDC以前;而对于燃烧持续期,影响权重较大的为φa,将各工况下φa控制为1.66~1.84,可以将燃烧持续期控制在28°CA以内;另一方面,φa的运行范围已经达到并超过了车用重载的稀薄极限.由于采用了独立供气的预燃室形式,船用预燃室式天然气发动机可在缸径较大、平均有效压力(BMEP)较高的前提下实现比重载天然气发动机更加稀薄的燃烧组织,从而有利于实现较高的热效率,同时更好的兼顾NOx排放. 相似文献
15.
对一台被动预燃室增压直喷汽油机的燃烧过程进行了三维数值模拟分析,研究了预燃室的不同设计参数如预燃室容积、射流孔数量、射流孔直径、射流孔结构等对当量燃烧时燃烧特性的影响。结果表明,预燃室射流点火优于常规火花塞点火的重要原因是主燃烧室内着火点增多,同时点火后预燃室内产生的高速冲击射流会提升主燃室内的湍流强度,从而加快湍流火焰的传播。在2 000 r/min转速和1.2 MPa平均指示有效压力工况下预燃室发动机的50%燃烧角相对火花塞发动机提前约8.5°。不同结构参数的预燃室模拟分析表明燃烧初期预燃室喷入主燃室射流的动量越大,对主燃室湍流强度的提升效果会越大,燃烧相位也会更优,在上述工况下不同结构预燃室50%燃烧角的差异最高可达约5.8°。变更预燃室结构造成的燃烧相位差异主要体现在燃烧前中期,随着转速和负荷升高,该差异有降低的趋势。 相似文献
16.
17.
18.
基于一台湍流射流点火(turbulent jet ignition, TJI)甲醇发动机开展发动机负荷拓展和性能优化试验研究。结果表明,稀燃工况下(过量空气系数大于1.4),采用进气增压技术可有效提升TJI甲醇发动机在高负荷工况下的燃烧稳定性和动力性,同时降低指示油耗率,提升排放性能;此外,基于进气增压技术提出了TJI甲醇发动机宽负荷工况下的最佳油耗运行策略。低负荷运行工况下,相较于质调节方式,采用量调节方式改变发动机负荷可使指示油耗率最高降低5.2%(平均指示压力为0.30 MPa时),一氧化碳(carbon monoxide, CO)、甲醛(methanal, HCHO)及碳氢化合物(hydrocarbon, HC)等污染物排放均有所降低,同时可提升燃烧稳定性,避免过于稀薄而造成的燃烧恶化现象。 相似文献
19.
应用AVL-FIRE软件对某CNG发动机建立工作过程的计算模型,并对燃烧过程进行数值模拟,通过改变模型中的过量空气系数和点火提前角等工作参数对该机性能的影响进行分析,从而为发动机的参数优化匹配提供方向性指导。 相似文献