首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Baibarac  S. Lefrant 《Carbon》2009,47(5):1389-84
Electrochemical polymerization of 2,2′-bithiophene (BTh) on single-walled carbon nanotube (SWCNT) films has been studied by Raman scattering and infrared absorption spectroscopy. Covalent functionalization of SWCNTs with poly(bithiophene) (PBTh) in its un-doped and doped states is demonstrated. The occurrence of a charge transfer process at the interface of PBTh and SWCNTs, is shown by: (i) an up-shift of the Raman lines associated with the radial breathing modes of SWCNTs that reveals both a doping process and an additional twisting together as a rope with the conducting polymer as binding agent; (ii) a new Raman band in the range 1430-1450 cm−1 indicating the functionalization of SWCNTs with PBTh in doped and un-doped states; (iii) strong absorption bands situated in the interval 600-800 cm−1 resulting from steric hindrance produced by the nanotube binding to the polymeric chain. Treatment of the PBTh/SWCNT composite with aqueous NH4OH solution forms un-doped PBTh covalently functionalized SWCNTs. At the resonant excitation of the metallic tubes, an additionally enhanced Raman process is generated by plasmon excitation in the metallic nanotubes. It is evidenced by a particular behavior in the Stokes and anti-Stokes branch of the PBTh Raman line at 1450 cm−1.  相似文献   

2.
The interaction of single wall carbon nanotubes (SWCNT) and the conducting polymer poly(3,4-ethylendioxythiophene/polystyrenesulfonate) (PEDOT/PSS) was studied by in situ Raman spectroelectrochemistry. The mixing of SWCNT with PEDOT/PSS caused a partial doping of SWCNT which was indicated by the change of relative intensity of the SWCNT Raman features. We have demonstrated for the first time that in situ Raman spectroelectrochemistry is a method of choice for precise and effective control of doping level of composites of conducting polymers and SWCNT. For electrochemical doping of SWCNT embedded in PEDOT/PSS the bleaching of RBM and TG modes of the SWCNT is delayed as compared to that in pure SWCNT. The delay is of about 0.2 V. This potential difference vanishes at higher potentials. The delayed response to doping is observed for both the SWCNT and the polymer matrix features. In the latter case the response is specific for individual polymer bands. Furthermore, during p-doping most of the polymer bands exhibit a subsequent monotonous bleaching. This contrasts with the behavior of the pristine polymer where the intensity changes are non-monotonous.  相似文献   

3.
Single-walled carbon nanotubes (SWCNTs) were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a non-aqueous electrolyte, 1 M Et4NBF4 in acetonitrile, suitable for supercapacitors. Further, in situ dilatometry and in situ conductance measurements were performed on single electrodes and the results compared to an activated carbon, YP17. Both materials show capacitive behavior characteristic of high surface area electrodes for supercapacitors, with the maximum full cell gravimetric capacitance being 34 F/g for YP17 and 20 F/g for SWCNTs at 2.5 V with respect to the total active electrode mass. The electronic resistance of SWCNTs and activated carbon decreases significantly during charging, showing similarities of the two materials during electrochemical doping. The SWCNT electrode expands irreversibly during the first electrochemical potential sweep as verified by in situ dilatometry, indicative of at least partial debundling of the SWCNTs. A reversible periodic swelling and shrinking during cycling is observed for both materials, with the magnitude of expansion depending on the type of ions forming the double layer.  相似文献   

4.
PANI/SWCNT composites were prepared by electrochemical polymerisation of polyaniline onto SWCNTs and their capacitive performance was evaluated by means of cyclic voltammetry and charge-discharge cycling in 1 M H2SO4 electrolyte. The PANI/SWCNT composites single electrode showed much higher specific capacitance, specific energy and specific power than pure PANI and SWCNTs. The highest specific capacitance, specific power and specific energy values of 485 F/g, 228 W h/kg and 2250 W/kg were observed for 73 wt.% PANI deposited onto SWCNTs. PANI/SWCNT composites also showed long cyclic stability. Based upon the variations in the surface morphologies and specific capacitance of the composite, a mechanism is proposed to explain enhancement in the capacitive characteristics. The PANI/SWCNT composites have demonstrated the potential as excellent electrode materials for application in high performance supercapacitors.  相似文献   

5.
The construction by sequential self-assembly process of reproducible, highly stable and pH-responsive redox-active nanostructured arrays of single-walled carbon nanotubes (SWCNTs) integrated with octa(hydroxyethylthio)phthalocyaninatoiron(II) (FeOHETPc) via ester bonds on a gold surface (Au-Cys-SWCNT-FeOHETPc) is investigated and discussed. The successful construction of this electrode is confirmed using atomic force microscopy and X-ray photoelectron spectroscopy as well as from the distinct cyclic voltammetric and electrochemical impedance spectroscopic profiles. The Au-Cys-SWCNT-FeOHETPc electrode exhibited strong dependence on the reaction of the head groups and the pH of the working electrolytes, the surface pKa is estimated as 7.3. The high electron transfer capability of the Au-Cys-SWCNT-FeOHETPc electrode over other electrodes (Au-Cys-SWCNT or the Au-Cys-FeOHETPc or the Au-FeOHETPc) suggests that SWCNT greatly improves the electronic communication between FeOHETPc and the bare gold electrode. The electron transfer rate constant (kapp) of Au-Cys-SWCNT-FeOHETPc in pH 4.8 conditions (∼1.7 × 10−2 cm−2 s−1) over that of the electrode obtained from SWCNT integrated with tetraaminophthalocyninatocobalt(II) (Au-Cys-SWCNT-CoTAPc) (5.1 × 10−3 cm−2 s−1) is attributed to the possible effect of the central metal on the phthalocyanine core and substituents on the peripheral positions of the phthalocyanine rings. We also prove that aligned SWCNT arrays exhibit much faster electron transfer kinetics to redox-active species in solutions compared to the randomly dispersed (drop-dried) SWCNTs.  相似文献   

6.
The Raman spectra of metallic tubes in SWCNTs (Single wall carbon nanotubes) bundles during electrochemical doping have been investigated using three different electrolyte solutions: LiClO4/CH3CN, LiClO4/propylenecarbonate/poly(methyl methacrylate) and LiClO4/polyethyleneimine. Precise control of the electrochemical charging enabled us to follow the detailed development of the tangential displacement (TG) mode of SWCNT bundles in dependence on the electrode potential. The response of the TG mode to electrode potential was dependent on electrolyte used as a consequence of different doping efficiency. We demonstrate that the liquid electrolyte solution (LiClO4/CH3CN) has superior doping efficiency to those of both the tested polymer electrolytes.  相似文献   

7.
Single-walled carbon nanotubes (SWCNTs) with diameter ranged from 1.22 to 1.6 nm filled with C60, C70 and C60H28 molecules (peapods), as well as double-walled carbon nanotubes (DWCNTs) derived from peapods, were studied by HRTEM, UV-vis-NIR and Raman spectroscopy. Suspensions with accurate concentration were used for spectroscopic studies to enable quantitative comparison of different substances. Filling of the SWCNTs with C70 molecules resulted in a reduced van der Waals interaction between the tubes in a bundle. The DWCNTs have lower intensity of the van Hove bands and weaker photoluminescence. Raman spectra at 633 and 1064 nm excitation wavelengths reveal that RBM frequencies of C60 and C70 peapods are equally downshifted compared to empty tubes. It was found that filling of the nanotubes with C60 and C70 caused spectral shifts of absorption bands: thin tubes display red shifts, while thick ones show blue shifts. DWCNTs and C60H28@SWCNTs do not show any shifts. All the results suggest that the filling of nanotubes with fullerenes alters the average diameter of the electron cloud around SWCNT framework; namely, it increases for thin SWCNTs, and decreases for thick ones. Our attempts to structurally assign thick nanotubes using reported extrapolations from data for thin tubes were unsuccessful.  相似文献   

8.
Li Zhang 《Carbon》2010,48(9):2582-55
Raman microscopy and spectroelectrochemistry with polymer electrolyte gating is developed to study the effect of charging on Raman spectra of individual single-wall carbon nanotubes (SWCNTs) and bundles. The Raman spectra of a small bundle, consisting of well-separated features from a metallic and a semiconducting SWCNT, have been obtained at different electrochemical charging levels. The broad Fano peak of the metallic SWCNT exhibits an appreciable frequency upshift and simultaneous line narrowing when the charging level, either positive or negative, is increased, in agreement with the presence of a Kohn anomaly in metallic SWCNTs. The radial breathing mode of the metallic tube also shows a similar but much weaker dependence on the charging potential. While the G mode frequencies of the semiconducting SWCNT also increase with the increasing charging level, the magnitude of such change is much smaller than in the metallic SWCNT. At high negative charging potentials the G peak of the semiconducting SWCNT exhibits a larger upshift than its G+ peak, leading to the observation of merging of these two peaks. However, both G+ and G peaks of the semiconducting SWCNT become broader at high charging levels, which are not predicted from previous theoretical studies.  相似文献   

9.
Shih-Hao Tseng 《Carbon》2010,48(5):1652-1661
A film of unpurified single-walled carbon nanotubes (SWCNTs) synthesized by the floating catalyst method using ferrocene as the catalyst precursor was subjected to different numbers of flashes and the products were studied. In addition to the remaining SWCNTs, Fe2SiO4 particles covered with amorphous carbon were found to attach on the SWCNTs, and the size increased with flash numbers. Fe2SiO4 arose from the oxidation of Fe3C, a ferrocene-induced catalyst particle embedded in the SWCNTs, where Si provided by SiO2 released from the mullite tube at 1200 °C during SWCNT growth. The amorphous carbon coating was attributed to insufficient time of the precipitated carbon to crystallize during rapid cooling after the flash. Variation of the Raman ID/IG ratio from an initial value of 0.035 to 0.025 after 100 flashes was due to competition between the removal of carbon from the nanotubes and the formation of amorphous carbon on the Fe2SiO4 particle surface. The electrical resistance of the SWCNT film increased with the number of flashes but the change became progressively smaller, with the increment decreasing from 17.5% to 0.2%. Similar experiments using purified SWCNTs were performed, and no such particles were observed.  相似文献   

10.
The electrical and textural properties of single-walled carbon nanotube buckypapers were tunned through chemical functionalization processes. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with three different chemical groups: Carboxylic acids (-COOH), benzylamine (-Ph-CH2-NH2), and perfluorooctylaniline (-Ph-(CF2)7-CF3). Functionalized SWCNTs were dispersed in water or dimethylformamide (DMF) by sonication treatments without the addition of surfactants or polymers. Carbon nanotube sheets (buckypapers) were prepared by vacuum filtration of the functionalized SWCNT dispersions. The electrical conductivity, textural properties, and processability of the functionalized buckypapers were studied in terms of SWCNT purity, functionalization, and assembling conditions. Carboxylated buckypapers demonstrated very low specific surface areas (< 1 m2/g) and roughness factor (Ra = 14 nm), while aminated and fluorinated buckypapers exhibited roughness factors of around 70 nm and specific surface areas of 160-180 m2/g. Electrical conductivity for carboxylated buckypapers was higher than for as-grown SWCNTs, but for aminated and fluorinated SWCNTs it was lower than for as-grown SWCNTs. This could be interpreted as a chemical inhibition of metallic SWCNTs due to the specificity of the diazonium salts reaction used to prepare the aminated and fluorinated SWCNTs. The utilization of high purity as-grown SWCNTs positively influenced the mechanical characteristics and the electrical conductivity of functionalized buckypapers.  相似文献   

11.
The electrical conductivities (σ) of nanocomposites of single-walled carbon nanotubes (SWCNTs) and high density polyethylene (HDPE) have been studied for a large number of nanocomposites prepared in a SWCNT concentration range between 0.02 and 8 wt%. The values of σ obey a percolation power law with an SWCNT concentration threshold, pc = 0.13 wt%, the lowest yet obtained for any kind of carbon-polyethylene nanocomposites. Improved electrical conductivities attest to an effective dispersion of SWCNT in the polyethylene matrix, enabled by the fast quenching crystallization process used in the preparation of these nanocomposites. Characterization by scanning electron microscopy (SEM) and Raman spectroscopy consistently points to a uniform dispersion of separate small SWCNT bundles at concentrations near pc and increased nanotube clustering at higher concentrations. Near pc, high activation energies and geometries of long isolated rods suggest that electron transport occurs by activated electron hopping between nanotubes that are close to each other but still geometrically separate. The degree of SWCNT clustering given by Raman spectroscopy and the barrier energy for electrical conductivity are highly correlated. The nanotubes act as nucleants in the crystallization of the polyethylene matrix, and change the type of supermolecular aggregates from spherulites to axialitic-like objects. The size of crystal aggregates decreases with SWCNT loading, however, in reference to the unfilled polyethylene, the three-dimensional growth geometry extracted from the Avrami exponents remains unchanged up to 2 wt%. Consistency between SEM, Raman and electrical transport behavior suggests that the electrical conductivity is dominated by dispersion and the geometry of the SWCNT in the nanocomposites and not by changes or lack thereof in the HDPE semicrystalline structure.  相似文献   

12.
Charlotte T.M. Kwok 《Carbon》2010,48(4):1279-10570
The temperature and time dependence of single-walled carbon nanotube (SWCNT) growth by chemical vapor deposition of ethanol on Fe2O3/MgO catalyst are compared at both low (∼27 Pa) and atmospheric pressure limits. SWCNTs are synthesized in two reactors with different geometries and operating pressures and are characterized by Raman spectroscopy. Both reactors show SWCNT growth within a relatively narrow temperature window of 700-850 °C, with an optimum growth time of 35 min for the cold wall reactor and 75 min for the quartz tube reactor. A kinetic model comprising of ethanol decomposition, SWCNT formation, and water etching is developed to better understand the growth mechanism. The existence of a temperature window and an optimum growth time in both reactors can be well described by the kinetic model. Simulation results suggest that the temperature and time dependence can be explained by the competition between the growth of SWCNTs and that of amorphous carbon.  相似文献   

13.
In this work we report on the synthesis, characterization and the electrochemical behavior of amide linked nickel (II) tetraamino-phthalocyanine (NiTAPc)-single walled carbon nanotube (SWCNT) nanomaterials (NiTAPc-SWCNT (linked)). UV-vis, XRD, IR and Raman spectroscopies were used in characterization whilst cyclic voltammetry was used to study the electrochemical behavior of NiTAPc-SWCNT (linked)-GCE. Relative to the bare glassy carbon electrode (bare-GCE), SWCNT-GCE, NiTAPc-GCE, and NiTAPc/SWCNT (mixed)-GCE, the NiTAPc-SWCNT (linked)-GCE gave the best current responses for the oxidation of 2-mercaptoethanol (2-ME). The catalytic rate constant is of the magnitude of 103 M−1 s−1 while the detection limit (LOD) is 0.15 μM using the 3δ notation, with a sensitivity of 2.53 μA μM−1 cm−2.  相似文献   

14.
J. Fan  R. Yuge  K. Hata 《Carbon》2007,45(4):722-726
We show that the efficiency of incorporating C60 in single-wall carbon nanotubes (SWCNTs) and that of the incorporated C60’s release from the SWCNTs depend on the SWCNT diameter. Through transmission electron microscopy, we found that the C60 incorporation efficiency reached its maximum at diameters of 1-2 nm, while the efficiency of C60 release from SWCNTs in toluene was maximized at 3-5 nm. The difficulty of C60 release from SWCNTs with diameters of 5-6 nm might reflect either the effective packing of C60 inside SWCNTs or a flattened SWCNT structure. We occasionally observed C60 molecules arranged in a line along the sidewall inside SWCNTs with large diameters/width (>7 nm), indicating that large diameter SWCNTs were sometimes flattened.  相似文献   

15.
Raman scattering is used to study the temperature-driven structural transformations of bundled single-walled carbon nanotubes (SWCNTs) observed in HiPCO and ARC synthesis by electron microscopy, i.e., tube-tube coalescence ∼1300-1400 °C, coalesced tubes to multi-walled tubes (MWCNT) at ∼1600-1800 °C and finally (only ARC tubes) MWCNT to graphitic nanoribbons (GNRs) at ∼1800 °C. All these transformations occurred in vacuum. Here, we present the details of these transformations as seen through the “eyes” of Raman scattering via changes in the radial (R) SWCNT band, the G-band (and its substructure) and the relative intensity of the disorder-induced D- and D′-band scattering. The Raman spectrum of GNRs is also discussed in detail. For 514.5 nm laser excitation, five relatively broad GNR Raman bands are observed: 1350, 1580, 1620, 2702 and 3250 cm−1. A Knight plot is used to estimate the GNR width and we find w ∼ 9 nm, which is in reasonable agreement with the estimate of 7.6 nm based on TEM and the model that a GNR is a collapsed MWCNT.  相似文献   

16.
The electrocatalytic and biointerfacial properties of acid- and O2-plasma-treated single-walled carbon nanotube (SWCNT) electrodes were investigated. The SWCNT-modified electrodes were characterized using scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical performance of these electrodes was analyzed by cyclic voltammetry and chronoamperometry. Glucose oxidase was covalently immobilized on the surface of the treated SWCNTs, and the analytical characteristics of the integrated glucose sensor were investigated using glucose as a target analyte. The plasma-activated SWCNT electrode exhibited a much higher sensitivity to the glucose and a lower detection limit than the acid-treated electrode, indicating that a larger amount of enzyme was immobilized on the plasma-treated SWCNT electrode than on the acid-treated electrode. This is due to the fact that the oxygenated functional groups are mainly located at the ends of the tubes in the acid-treated SWCNTs, while the plasma-treated SWCNTs have an even larger surface area available for enzyme immobilization owing to the functional groups covering the entire surface of the SWCNTs.  相似文献   

17.
Composites of conducting polymer and single-walled carbon nanotubes (SWCNTs) are attracting great attentions in harvesting low-grade waste heat. Prefabricated SWCNTs film used as the working electrode was placed at the liquid interface between the inorganic phase (dilute sulfuric acid solution) and the organic phase consisting of dichloromethane (DCM), aniline (ANI), and 3,4-ethylenedioxythiophene (EDOT), together with a platinum wire (the counter electrode) and a silver chloride (AgCl/Ag) electrode (the reference electrode), to perform electrochemical polymerization of ANI and EDOT at the liquid interface. Thermoelectric (TE) composites of poly(ANI-co-EDOT) and SWCNTs were produced. Compared with composites from ultrasonic mixing and coating methods, the 10 wt% SWCNTs-composites in situ formed in electrochemical polymerization have the highest power factor (PF) of 41.56 ± 3.58 μW m−1 K−2, higher than the PF values of the composites formed by other two methods. The work indicates that the TE properties of ANI-EDOT copolymer/SWCNT (poly[ANI-co-EDOT]/SWCNT) composites prepared by electrochemical polymerization were better than those of the composites obtained by physical mixing the electrochemically synthesized poly(ANI-co-EDOT) with SWCNTs. Moreover, SWCNTs treated with sodium dodecylbenzene sulfonate (SDBS) could further improve the TE properties of the composites.  相似文献   

18.
We have fabricated single-walled carbon nanotube (SWCNT) Schottky diodes by asymmetrically modifying the two Au/SWCNT contacts using different thiolate molecules, methanethiol (CH3SH) and trifluoroethanethiol (CF3CH2SH). Characterization has revealed that highly asymmetrical contacts with Schottky barrier heights of ∼190 and ∼40 meV (increased by over 70% and decreased by over 60%, respectively with respect to that of pristine Au/SWCNT contact of ∼110 meV) were achieved for the Au/SWCNT contacts modified by CH3SH and CF3CH2SH, respectively. The performance of our SWCNT Schottky diodes is as follows: the forward and reverse current ratio (Iforward/Ireverse) higher than 104, a forward current as high as ∼5 μA, a reverse leakage current as low as ∼100 pA, and a current ideality factor as low as ∼1.42. This is at least comparable to, if not better than SWCNT Schottky diodes fabricated with asymmetrical metals, where one contact is a metal with a work function lower than that of SWCNTs to yield a Schottky contact, while the other has a work function higher than that of SWCNTs to achieve an ohmic (more near ohmic) contact.  相似文献   

19.
The electrochemical properties of Sr1−xCexMnO3 (SCM, 0.1≤x≤0.4)–Gd0.2Ce0.8O2−x (GDC) composite cathodes were determined by impedance spectroscopy. The study focused on the doping effect of Ce in the composite cathodes. Single-phase perovskite was obtained for 0.1≤x≤0.3 in SCM. No reaction occurred between the Sr0.7Ce0.3MnO3 electrode and the GDC electrolyte at an operating temperature of 800 °C for 100 h. In the single phase perovskite region, lattice expansion occurred due to the reduction of Mn4+ to Mn3+ at B-sites, and this was attributed to an increase in Ce content. Ce doping enhanced the electrode performance of SCM–GDC composite cathodes, and best electrode performance was achieved for the Sr0.7Ce0.3MnO3–GDC composite cathode (0.93 Ω cm2 and 0.47 Ω cm2 at 750 °C and 800 °C, respectively). The improvement in electrode performance was attributed to increases in charge carriers induced by a shift of some Mn from +4 to +3 and to the formation of surface oxygen vacancies caused by Mn4+ to Mn3+ conversion at high temperatures.  相似文献   

20.
The first in situ electron paramagnetic resonance (EPR) spectroelectrochemical study of C60 fullerene peapods (C60@SWCNT) as well as that of single-walled carbon nanotubes (SWCNTs) in different electrolyte solutions describes the formation of spin states by charge transfer reactions. Electrochemical reduction of peapods at high negative potentials causes the production of spins at the SWCNT site, while the intratubular fullerene is unchanged.Slightly anisotropic EPR signals were detected during electrochemical reduction of single-walled carbon nanotubes and fullerene peapods in the potential region from −1.75 to −2.15 V vs. decamethylferrocene/decamethylferrocinium couple. They are centered at g = 2.0038 and exhibit a hyperfine structure indicating the presence of functional groups containing N, O, H atoms in neighborhood. They differ from the EPR signals of chemically (potassium) doped SWCNT and C60@SWCNT. As the EPR signal is influenced by the electrolyte counter ions a reaction with electrolysis products of tetraalkylammonium cations is taken into consideration. No EPR lines of fullerene anions were found in electrochemically treated peapods, but these anions are detectable, if a free C60 in solution is cathodically reduced on a SWCNT electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号