首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Five hundred hours continuous aging test at constant discharge current (640 mA cm−2) was performed on PBI/H3PO4 high temperature PEMFC unit cell, electrochemical techniques-linear sweep voltammetry (LSV) and AC impedance measurement were used to investigate the changes of electrochemical surface area (ESA) and high frequency resistance (internal resistance) with time. Initial experimental results showed that during 500 h continuous aging test the main reason for cell performance degradation is the decrease of ESA caused by sintering. In addition, a one-dimensional mathematical model was constructed, the concentration distributions of cathode reactant gases (O2 and gaseous H2O) were calculated and polarization curves recorded during aging test were simulated based on the model, the simulated polarization curves compare well with the experimental results.  相似文献   

2.
The effects of dry and wet oxidation treatments of activated carbon (AC) on the surface chemistry and porous structure are studied. Using cherry stones (CS), AC was first prepared by carbonization at 900 °C for 2 h in N2 and activation at 850 °C for 2 h in CO2. Then, the resulting AC was oxidized in O2(air) or O3 atmosphere and with HNO3 and H2O2 solutions. The acidic-basic surface sites were analyzed by FT-IR spectroscopy, Boehm method, and pH of the point of zero charge (pHpzc) and the porous structure by N2 adsorption and mercury porosimetry. It has been found that the oxidizing agent, under specific reaction conditions, rather than whether it was a gas or a solute in aqueous solution, is the main factor that controls the changes produced in the surface chemistry and porous structure of AC. O3 and HNO3 are the most effective oxidants to form acidic oxygen surface groups. However, the content of basic groups decreases for the four oxidants, the effect being much stronger for HNO3. A microporosity reduction is also observed, which is more important for O2(air) and especially for HNO3 than for O3 and H2O2. The percentage of microporosity loss is as high as 43.3 for HNO3. Mesoporosity significantly develops, whereas macroporosity usually remains practically unchanged. Dry oxidation of AC at 100 °C in O3 has proved to be the most promising method to increase the content of acidic oxygen surface groups in the material without greatly decreasing the content of basic sites and microporosity and with a significant mesoporosity development.  相似文献   

3.
Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes   总被引:1,自引:0,他引:1  
PbO2 and F-doped PbO2 (F-PbO2) anodes have been prepared by a standard thermal decomposition-electrodeposition technique. The electrochemical stability of these anodes has been investigated by the accelerated life tests in sulphuric acid solution. The results show that the service life of the F-PbO2 anodes is almost three times longer than that of the PbO2 anodes. Furthermore, in the degradation of 4-chlorophenol (4-CP), the F-PbO2 anodes give a higher degradation rate than that observed for the PbO2 anodes. The influence of F anion doping on the stability and activity of PbO2 anodes has been discussed. With the F-PbO2 anodes, the degradation of 4-CP is investigated according to the results of high-performance liquid chromatograph (HPLC), ionic chromatograph (IC) and cyclic voltammetry (CV). In addition, the electron spin resonance (ESR) technique using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trap reagent has been applied to detect free radical intermediates generated during in situ the electrocatalytic degradation of aqueous 4-CP on the F-PbO2 anodes. ESR measurements give the direct evidence that the active species (OH) are responsible for the decomposition of 4-CP over F-PbO2 under anodic bias potential, strongly suggesting that the electrocatalytic degradation of most organic compounds on F-PbO2 anodes proceed via surface intermediates of water oxidation, not via direct oxidation at electrode surface. The formation mechanism of surface intermediates is also discussed.  相似文献   

4.
High surface area Pt-Ru (between 120 and 400 cm2 mg−1) meso-sized particles and mesoporous coatings were electrodeposited on reticulated vitreous carbon (RVC) three-dimensional electrodes using reverse emulsions and microemulsions. The organic phase of the colloidal media was composed of cyclohexane, Triton X-100 non-ionic surfactant and tetrabutylammonium perchlorate (for ionic conductivity) while the aqueous phase contained H2PtCl6 and RuCl3 (or (NH4)2RuCl6). For microemulsification to occur isopropanol was also added as co-surfactant. The catalytic activity for the electro-oxidation of methanol was assessed by cyclic voltammetry and chronopotentiometry in conjunction with surface area measurement by Cu underpotential deposition. The composition and morphology of the Pt-Ru deposit was analyzed by inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy, respectively. The effects on the catalytic activity of the deposition current density, temperature, RVC pretreatment and plating bath composition are presented. It was found that the electrodeposition of Pt-Ru in reverse microemulsion yielded the highest specific surface area (400 cm2 mg−1) and catalytic activity toward CH3OH electro-oxidation as shown, for example, by a 50-200 mV more negative anode potential determined by chronopotentiometry compared to a catalyst obtained by pure aqueous and emulsion electroplating.  相似文献   

5.
S.B. Tang 《Electrochimica acta》2006,52(3):1161-1168
Properties of LiMn2O4 thin films deposited on polished stainless steel substrates at 400 °C and 200 mTorr of oxygen by pulsed laser deposition have been characterized by electrochemical measurements and physical analyses. The film was mainly composed of nano-crystals less than 100 nm. A maximum specific capacity of 141.9 mAh/g cycled between 3.0 and 4.5 V with a current density of 20 μAh/cm2 has been achieved. The film exhibited an excellent cycling stability up to 500 cycles. The low charge-transfer resistance at high potentials as revealed by AC impedance resulted in high charge/discharge potential and more capacity. The effect of overdischarge was limited and Jahn-Teller effect was overcome to a significant extent in this nano-crystalline film. Ex situ XRD, Raman and XPS provided supporting evidence in the changes in structure, reactivity and cycling stability of nano-crystalline LiMn2O4 film cathodes under different charge/discharge states and cycling tests. SEM images also revealed the stability of the surface topography after a long-term cycling test.  相似文献   

6.
A low pressure plasma process working at 600-800 Pa was used to deposit from aqueous solution ZrO2-4 mol% Y2O3 (Yttria partially stabilized Zirconia-YpSZ) layers and stacks of Ta2O5/YpSZ layers for use as thermal barrier coatings (TBC). The observation of the cross section revealed a high porosity. The thermal diffusivity of the layers (1 × 10−7 m2 s−1) was measured by a laser flash technique and compared with values obtained on air plasma sprayed material (3 × 10−7 m2 s−1). The plasma reactor were also used to deposit ZrB2-ZrO2-SiC layers used as Ultra High Temperature Composite (UHTC) from aqueous solutions of zirconyl and Boron nitrates containing suspensions of SiC. Layers up to 100 μm thick were obtained on SiC substrates. XRD was used to study the crystallinity of the layer. The presence of ZrB2 and SiC phases was confirmed after the deposition. XRD analysis showed that heat treatment at 1073 K under oxidizing conditions led to the loss of ZrB2 and the appearance of ZrO2 phases. To understand the behaviour of the layers to interaction with atomic oxygen (combustion for TBC and spacecraft re-entry phase for UHTC), we have measured the atomic oxygen recombination coefficient to determine the number of adsorption sites on the surface of the coatings. This was accomplished by using a low pressure plasma reactor coupled with optical spectroscopic measurements as a diagnostic technique.  相似文献   

7.
Serrated leaf-like CaTi2O4(OH)2 nanoflake crystals were synthesized via a template-free and surfactant-free hydrothermal process. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth process for CaTi2O4(OH)2 nanoflakes was dominated by a crystallization–dissolution–recrystallization growth mechanism. BET analysis showed that CaTi2O4(OH)2 nanoflakes had mesoporous structure with an average pore size of 8.7 nm, and a large surface area of 88.4 m2 g−1. Cyclic voltammetry and galvanostatic charge–discharge tests revealed that the electrode synthesized from CaTi2O4(OH)2 nanoflakes reached specific capacitances of 162 F g−1 at the discharge current of 2 mA cm−2, and also exhibited excellent electrochemical stability.  相似文献   

8.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

9.
Lead dioxide (PbO2) thin films were prepared on Ti/SnO2 substrates by means of electrodeposition method. Galvanostatic technique was applied in PbO2 film formation process, and the effect of deposition current on morphology and crystalline form of the PbO2 thin films was studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The energy storage capacity of the prepared PbO2 electrode was investigated by means of cyclic voltammetry (CV) and charge/discharge cycles, and a rough surface structure PbO2 film was selected as positive electrode in the construction of PbO2/AC hybrid capacitor in a 1.28 g cm−3 H2SO4 solution. The electrochemical performance was determined by charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results showed that the PbO2/AC hybrid capacitor exhibited high capacitance, good cycling stability and long cycle life. In the voltage range of 1.8-0.8 V during discharge process, considering the weight of all components of the hybrid capacitor, including the two electrodes, current collectors, H2SO4 electrolyte and separator, the specific energy and power of the device were 11.7 Wh kg−1 and 22 W kg−1 at 0.75 mA cm−2, and 7.8 Wh kg−1 and 258 W kg−1 at 10 mA cm−2 discharge currents, respectively. The capacity retains 83% of its initial value after 3000 deep cycles at the 4 C rate of charge/discharge.  相似文献   

10.
Photocatalytic degradation of 4-chlrophenol (4-CP) using UVA-LED assisted persulfate and hydrogen peroxide activated by the nZVI (Nano Zero Valent Iron) in a batch photocatalytic reactor was investigated. The reaction involved a lab-scale photoreactor irradiated with UVA-LED light emitted at 390 nm. The efficiency of the reaction was evaluted in terms of 4-CP degradation and mineralization degree at different pH of solution, initial concentrations of nZVI, persulfate, hydrogen peroxide and 4-CP. In UVA-LED/H2O2/nZVI process, complete degradation of 4-CP (>99%) and 75% mineralization was achieved at pH of 3, hydrogen peroxide concentration of 0.75 mM, nZVI dosage of 1mM and initial 4-CP concentration of 25mg/L at the reaction time of 30 min. The optimum conditions obtained for the best 4-CP degradation rate were at an initial concentration of 25mg/l, persulfate concentration of 1.5mM, nZVI dosage of 1mM, pH of 3 and reaction time of 120min for UVA-LED/persulfate/nZVI process. It was also observed that the 4-CP degradation rate is dependent on initial 4-CP concentrations for both processes. The pseudo-first-order kinetic constant at 25mg/L initial concentration of 4-CP was found to be 1.4×10?1 and 3.8×10?2 in UVA-LED/H2O2/nZVI and UVA-LED/persulfate/nZVI processes, respectively. Briefly, the UVA-LED/H2O2/nZVI process enhanced the degradation rate of 4-CP by 3.67-times in comparison to UVA-LED/persulfate/nZVI process at 30min contact time, which serves as a new and feasible approach for the degradation of 4-CP as well as other organic contaminants containing wastewater.  相似文献   

11.
A promising method of measuring surface temperatures in harsh environments is the use of thermographic phosphor coatings. There, the surface temperature is evaluated from the phosphorescence decay lifetime following a pulsed laser or flash lamp light excitation. Depending on the used dopant, single doped M3+:α-Al2O3 (M = Cr, Dy, Tm) emit at 694 nm (Cr3+), 488 nm (Dy3+), 584 nm (Dy3+), and 459 nm (Tm3+), respectively. However, the accessible temperature range with a single dopant is limited: for the Cr3+-transition from 293 K up to 900 K, and for the Dy3+ and Tm3+-transitions both from 1073 K up to 1473 K. In the present study a new approach is followed to extend these limitations by co-doping two dopants using the sol–gel method and dip coating of α-Al2O3 thin films. For that application (Dy3+ + Cr3+) co-doped thin α-Al2O3 films and (Tm3+ + Cr3+) co-doped α-Al2O3 films with thicknesses of 4–6 μm were prepared, and the temperature-dependent luminescence properties (emission spectra and lifetimes) were analysed after pulsed laser excitation in the UV (355 nm). The phosphorescence lifetime as a function of temperature were measured between 293 K and 1473 K. A considerably extended range for surface temperature evaluation was established following this new approach by combining different dopants on the molecular level.  相似文献   

12.
Anatase titania nanotube arrays were fabricated by means of anodization of Ti foil and annealed at 400 °C in respective CO and N2 gases for 3 h. Electrochemical impendence spectroscopy study showed that CO annealed arrays possessed a noticeably lower charge-transfer resistance as compared with arrays annealed in N2 gas under otherwise the same conditions. TiO2 nanotube arrays annealed in CO possessed much improved lithium ion intercalation capacity and rate capability than N2 annealed samples. At a high charge/discharge current density of 320 mA g−1, the initial discharge capacity in CO annealed arrays was found to be as high as 223 mAh g−1, 30% higher than N2 annealed arrays, ∼164 mAh g−1. After 50 charge/discharge cycles, the discharge capacity in CO annealed arrays remained at ∼179 mAh g−1. The improved intercalation capacity and rate capability could be attributed to the presence of surface defects like Ti-C species and Ti3+ groups with oxygen vacancies, which not only improved the charge-transfer conductivity of the arrays but also possibly promoted phase transition.  相似文献   

13.
Direct synthesis of H2O2 acid solutions was studied using a gas-diffusion cathode prepared from activated carbon (AC), vapor-growing-carbon-fiber (VGCF) and poly-tetra-fluoro-ethylene (PTFE) powders, with a new H2/O2 fuel cell reactor. O2 reduction to H2O2 was remarkably enhanced at the three-phase boundary (O2(g)-electrode(s)-acid(l)) at the [AC + VGCF] cathode. Fast diffusion processes of O2 to the active surface and of H2O2 to the bulk acid solutions were essential for H2O2 accumulation. Synergy of AC and VGCF was observed for the H2O2 formation. RRDE and cyclic voltammetry studies indicated that the surface of AC functioned as the active phase for O2 reduction to HO2, and VGCF functioned as an electron conductor and a promoter to convert HO2 to H2O2. A maximum H2O2 concentration of 353 mM (1.2 wt%) was accomplished under short-circuit conditions (current density 12.7 mA cm−2, current efficiency 40.1%, geometric area of cathode 1.3 cm2, reaction time 6 h).  相似文献   

14.
Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to implant into nonporous polymeric templates in C2Cl4 solvent. The templates are then removed upon calcination at 500 °C in air atmosphere, forming hollow In2O3 particles. Specific surface area (0.5-260 m2 g−1) and differential pore volume (7 × 10−9 to 3.8 × 10−4 m3 g−1 Å−1) of the hollow particles can be tailored by adjusting the precursor concentration. For the hollow In2O3 particles with high surface area (260 m2 g−1), an enhanced photocatalytic efficiency (up to ∼one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%.  相似文献   

15.
The present paper shows that the performance of an inexpensive activated carbon used in electrochemical capacitors can be significantly enhanced by a simple treatment with KOH at 850 °C. The changes in the specific surface area, as well as in the surface chemistry, lead to high capacitance values, which provide a noticeable energy density.The KOH-treatment of a commercial activated carbon leads to highly pure carbons with effective surface areas in the range of 1300-1500 m2 g−1 and gravimetric capacitances as high as three times that of the raw carbon.For re-activated carbons, one obtains at low current density (50 mA g−1) values of 200 F g−1 in aqueous electrolytes (1M H2SO4 and 6M KOH) and around 150 F g−1 in 1M (C2H5)4NBF4 in acetonitrile. Furthermore, the resulting carbons present an enhanced and stable performance for high charge/discharge load in organic and aqueous media.This work confirms the possibilities offered by immersion calorimetry on its own for the prediction of the specific capacitance of carbons in (C2H5)4NBF4/acetonitrile. On the other hand, it also shows the limitations of this technique to assess, with a good accuracy, the suitability of a carbon to be used as capacitor electrodes operating in aqueous electrolytes (H2SO4 and KOH).  相似文献   

16.
Template-free sol-gel synthesis in the absence of an acid catalyst resulted in mesoporous nanocrystalline γ-alumina, meso-γ-Al2O3, possessing high surface areas, 400-460 m2/g, and high porosity, 1.4-1.9 cm3/g. The prepared alumina was characterized by powder XRD, SEM, and N2 adsorption for BET surface area and porosity measurements. FTIR spectroscopy was employed to study the catalytic activity of meso-γ-Al2O3 and commercial γ-alumina, com-γ-Al2O3, in the dehydration reaction of methanol to dimethyl ether, DME. The prepared meso-γ-Al2O3 showed higher catalytic activity than the commercial catalyst with a conversion around 86% and DME selectivity around 99%. The products' selectivity showed a significant dependence on the flow rate of the feed gas stream. As the flow rate increased, the selectivity to DME increased on the account of the minor products, CO2 and CH4. However, as the flow rate decreased, more CO2 formed and the DME selectivity decreased.  相似文献   

17.
Graphene nanosheet (GNS)/Co3O4 composite has been rapidly synthesized by microwave-assisted method. Field emission scanning electron microscopy and transmission electron microscopy observation reveals the homogeneous distribution of Co3O4 nanoparticles (3-5 nm in size) on graphene sheets. Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. A maximum specific capacitance of 243.2 F g−1 has been obtained at a scan rate of 10 mV s−1 in 6 M KOH aqueous solution for GNS/Co3O4 composite. Furthermore, the composite exhibits excellent long cycle life along with ∼95.6% specific capacitance retained after 2000 cycle tests.  相似文献   

18.
In this study, various Cu-based spinel compounds, i.e., CuFe2O4, CuMn2O4, CuAl2O4 and CuLa2O4, were fabricated by a solid-state reaction method. Reduction behaviors and morphological changes of these materials have been characterized by H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Moreover, the catalytic properties for steam reforming of methanol (SRM) of these Cu-based spinel compounds were investigated. H2-TPR results indicated that the reducibility of Cu-based spinel compounds was strongly dependent on the B-site component while the CuFe2O4 catalyst revealed the lowest reduction temperature (190 °C), followed respectively by CuAl2O4 (267 °C), CuMn2O4 (270 °C), and CuLa2O4 (326 °C). The reduced CuAl2O4 catalyst demonstrated the best performance in terms of catalytic activity. Based on the SEM and XRD results, pulverization of the CuAl2O4 particles due to gas evolution and a high concentration of nanosized Cu particles (≈50.9 nm) precipitated on the surfaces of the Al2O3 support were observed after reduction at 360 °C in H2. The BET surface area of the CuAl2O4 catalyst escalated from 5.5 to 13.2 m2/g. Reduction of Cu-based spinel ferrites appear to be a potential synthesis route for preparing a catalyst with high catalytic activity and thermal stability. The catalytic performance of these copper-oxide composites was superior to those of conventional copper catalysts.  相似文献   

19.
Alkali carbonate-coated graphite electrode for lithium-ion batteries   总被引:1,自引:0,他引:1  
S. Komaba  M. Watanabe  N. Kumagai 《Carbon》2008,46(9):1184-1193
Charge and discharge behavior of a graphite electrode for rechargeable lithium-ion batteries was successfully improved by pretreatment of graphite powders with A2CO3 (A = Li, Na, and K) aqueous solutions. In the process of the pretreatment, graphite powders were simply dispersed in the aqueous solutions, and then filtered and dried to modify the surface of graphite powder with solid alkali carbonate. With the optimum concentration of each carbonate, 1 wt.% Li2CO3, 5 wt.% Na2CO3, and 1 wt.% K2CO3, the irreversible reaction at the initial cycle was suppressed by the pretreatment which was capable of modifying the solid electrolyte interphase formed on the graphite electrode surface. Furthermore, the rate capability was improved by the surface modification, that is, the reversible discharge capacities at 175 mA g−1 increased with adequate capacity retention in a 1 mol dm−3 LiClO4 ethylene carbonate:diethyl carbonate electrolyte solution because of the kinetics enhancement of lithium-ion transfer at the interface.  相似文献   

20.
Sewage sludge was used as precursor to develop a potential inexpensive adsorbent by both simple drying and pyrolysis. The resulting materials were evaluated as adsorbents for the removal of 4-chlorophenol (4-CP) from aqueous solution. The dried biosolids showed a BET surface area lower than 3 m2/g, which yield a maximum adsorption capacity of 0.73 mmol 4-CP/g at pH 5.0 and 15 °C. The carbonization of biosolids under relatively mild conditions allowed obtaining materials with BET surface area up to 45 m2/g, which led to a significant increase of the maximum adsorption capacity (1.36 mmol 4-CP/g). The high ash content of the starting material (23%, d.b.) limits the development of porosity on a total dry-weight basis. Adsorption data were well fitted to the Redlich–Peterson isotherm equation whereas the most commonly used Langmuir and Freundlich equations were less satisfactory probably because of the occurrence of summative adsorption phenomenon. A thermodynamic study of the adsorption showed the spontaneous and exothermic nature of the process. Thus, simple drying and carbonization provide two ways of valorization of sewage sludge through its conversion into inexpensive low-rank adsorbents potentially useful for the removal of some hazardous water pollutants, like chlorophenols and related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号