共查询到20条相似文献,搜索用时 0 毫秒
1.
Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles 总被引:2,自引:0,他引:2
The field emission properties of double-walled carbon nanotubes (DWCNTs) were remarkably improved by decorating their surface with ruthenium (Ru) metal nanoparticles. The Ru nanoparticles were attached effectively on the surface of DWCNTs via a chemical procedure. The Ru-decorated DWCNTs showed lower turn-on voltage, higher emission current density, and improved emission uniformity compared with pristine DWCNTs. The effect of Ru nanoparticles on the work function and density of states was evaluated by the first-principles calculation. The enhanced field emission properties of Ru-DWCNTs were mainly attributed to the Ru nanoparticles which increased the field enhancement factor and the density of emission sites. Our results indicate that the Ru-decorated DWCNTs can be used as an effective field emitter for various field emission devices. 相似文献
2.
Band structure and absorption spectrum of double-walled zigzag carbon nanotubes in an electric field
The electronic structure of the (9, 0)-(18, 0) double-walled zigzag carbon nanotubes in the presence of a uniform transverse electric field is studied by the tight-binding model. The electric field could induce the semiconductor-metal transition, change the direct gap into the indirect gap, alter the subband curvatures, destroy the double degeneracy, produce the new band-edge states, make more subbands group around the Fermi level, and widen the π-band width. Such effects are directly reflected in density of states and optical excitation spectra. The absorption spectra exhibit a lot of prominent peaks, mainly owing to the rich one-dimensional energy subbands. The intensity, the number, and the frequency of absorption peaks are strongly modulated by the electric field. The modulation of electronic and optical properties is amplified by the parallel magnetic field. The predicted electronic and optical properties can be, respectively, verified by the conductance measurements and the optical spectroscopy. 相似文献
3.
Using TEM, absorption and photoluminescence-excitation spectroscopy we have shown that nitrogen and nitrogen/boron doping of single-walled carbon nanotubes produce significant changes in both the optical properties and the diameter distribution of nanotubes produced by the arc-discharge method. Smaller diameter tubes are preferentially formed in the presence of boron. In addition the presence of nitrogen is found to significantly affect the emission properties of the nanotube ensemble, causing a shift in the dominant emission to lower energies, possibly due to changes in the bundling structure of the nanotubes in solution, but only very small changes are observed in the emission energies for individual nanotubes. 相似文献
4.
Molecular dynamics simulations are performed on single- (SWCNTs) and double-walled carbon nanotubes (DWCNTs) to investigate the effects of strain rate on their buckling behavior. The Brenner’s second-generation reactive empirical bond order and Lennard-Jones 12-6 potentials are used to describe the short range bonding and long range van der Waals atomic (vdW) interaction within the carbon nanotubes, respectively. The sensitivity of the buckling behavior with respect to the strain rate is investigated by prescribing different axial velocities to the ends of the SWCNTs and DWCNTs in the compression simulations. In addition, the effects of vdW interaction between the walls of the DWCNTs on their buckling behavior are also examined. The simulation results show that higher strain rates lead to higher buckling loads and buckling strains for both SWCNTs and DWCNTs. A distinguishing characteristic between SWCNTs and DWCNTs is that the former experiences an abrupt drop in axial load whereas the axial load in latter decreases over a finite, albeit small, range of strain after buckling initiates. The buckling capability of DWCNT is enhanced in the presence of vdW interaction. DWCNTs can sustain a higher strain before buckling than SWCNTs of similar diameter under otherwise identical conditions. 相似文献
5.
L.G. Bulusheva A.V. Okotrub A.G. Kudashov Yu.V. Shubin E.V. Shlyakhova N.F. Yudanov E.M. Pazhetnov A.I. Boronin D.V. Vyalikh 《Carbon》2008,46(6):864-869
Nitrogen-doped carbon (CNx) nanotubes have been synthesized by acetonitrile vapor decomposition over catalyst nanoparticles produced in the result of thermolysis of solid solutions of Fe and Ni bimaleates. X-ray photoelectron spectroscopy revealed the nitrogen content in CNx nanotubes grows from 0.4 to 1.2 at%, when Ni portion in catalyst increases. Nitrogen doping level of sample produced using bimaleates of Fe and Ni taken in a ratio of 7:3 is deviated from this dependence due to formation of two phases of metallic catalyst. N 1s-edge X-ray absorption spectra of samples showed three peaks, which by results of quantum-chemical calculation on nitrogen-containing carbon nanotube (CNT) model were assigned to pyridinic, graphitic, and molecular forms of nitrogen. Measurements of current–voltage characteristics of the samples found the electron emission threshold is reduced with amount of nitrogen incorporated into CNx nanotubes. 相似文献
6.
Continuous double-walled carbon nanotube (DWCNT) films were synthesized using an Fe-Mo catalyst by the arc discharge method. This new catalyst has dramatically improved the purity and selectivity of DWCNT product. High-resolution transmission electron microscopy indicates that the outer and inner diameter of DWCNT are 1.9-4.7 nm and 1.2-3.8 nm, respectively. The field emission properties of DWCNT films have been studied. The directly grown film was transferred onto quartz substrates and used as emission cathodes, and has demonstrated a quite good emission performance. Moreover, the emissions of DWCNT films have been further improved by heat treatment. The film after 400 °C oxidation shows excellent field emission property with a low turn-on (Eto = 0.6 V/μm) and threshold field (Eth = 0.9 V/μm) corresponding to the emission current density of 1 μA/cm2 and 1 mA/cm2, respectively. 相似文献
7.
8.
The mechanical instability of doubled-walled carbon nanotubes subject to torsion motion is investigated through molecular dynamics. A newly revealed buckling mode with one or three thin, local rims on the outer tube was discovered while the inner tube shows a helically aligned buckling mode in three dimensions. The distinct buckling modes of the two tubes imply the inapplicability of continuum mechanics modeling in which it is postulated that the buckling modes of the constituent tubes have the same shape. In view of this problem, a new concept of the equivalent thickness of double-walled carbon nanotubes is introduced, which enables the Kromm shell model to be applied to the derivation of the torsional buckling angle without the restraint of the two tubes having identical shapes. 相似文献
9.
Thermal-field emission characteristics from nano-tips of amorphous diamond and carbon nanotubes at various temperatures are reported in this study. Amorphous diamond emitted more than 13 times more electrons at a temperature of 300 °C than at room temperature. In contrast, CNTs exhibited no increase of emitted current upon heating to 300 °C. The thermally agitated emission of amorphous diamond is attributed to the presence of defect bands. The formation of these defect bands raises the Fermi level into the upper part of the band gap, and thus reduces the energy barrier that the electrons must tunnel through. From defect bands within the band gap, the conduction band electrons were significantly increased due to electron tunnels from defect bands. The enhanced thermal-field emission originating from defect bands was observed in this study. This thermally agitated behavior of field emission for amorphous diamond was highly reproducible as observed in this research. 相似文献
10.
11.
In this paper, a theoretical analysis of the torsional buckling instability of double-walled carbon nanotubes (DWCNTs) and the DWCNTs embedded in an elastic medium is presented based on the continuum elastic shell model and Winkler spring model. Using the proposed theoretical approach, the influences of the aspect ratio, the buckling modes and the surrounding medium on the torsional stability are examined in detail. The simulation results show that the torsional instability of DWCNTs can occur in different buckling modes according to the aspect ratio. The van der Waals (vdW) interaction force between nanotubes reinforces the stiffness of nanoshells. Thus, the DWCNTs possess higher buckling stability than the SWCNTs without considering vdW interaction force. 相似文献
12.
《Carbon》2015
Using the density functional theory combined with the nonequilibrium Green's function, the transport properties of double-walled carbon nanotubes (DWCNTs) and carbon boronitride (CBN) heteronanotubes were investigated. As the hopping length increases, the conductance of DWCNTs shows a dramatic variation that is independent of the intertube space. The transport of the CBN heterojunctions also displays abnormal behavior when the hopping length is changed, which is very different from the behavior of DWCNTs. The currents of the forward in the CBN heterojunctions are about 3–15 times as large as those of the back under lower bias voltages. The negative differential resistance (NDR) effect occurs in the CBN heterojunctions, and the peak-to-valley ratio in the additional NDR regions is about 2–4 for the current–voltage relationship. The hopping length and BN parts have a great influence on the transport of the double-walled nanodevices. 相似文献
13.
We present simulations of field emission from 2-nm long open (5,5), closed (5,5) and open (10,0) carbon nanotubes. Besides usual effects associated with the field-emission process, the total-energy distributions of the field-emitted electrons present peaks that are shifted by the electric field. Their sharpness and the evolution of their amplitude when changing the electric field depend on the semiconducting or metallic character of the nanotube. 相似文献
14.
The effects of growth conditions, such as methane flow rates and type of substrate on the distribution, structure and properties of nanotubes were examined. A scanning electron microscope equipped with a Raman spectrometer enabled us to obtain critical information about the structure and electrical properties of the nanotubes simultaneously, and it was shown that these were highly dependent on the methane flow rate. At a methane flow rate of 600 cc/min, we primarily obtained double-walled carbon nanotubes having predominantly semiconducting properties. At a higher methane flow rate (700 cc/min), a mixture of single-walled and double-walled carbon nanotubes was created, most of which were semiconducting. At low methane flow rates (300 and 500 cc/min), metallic multi-walled carbon nanotubes were predominated. Carbon nanotubes grown on a quartz substrate were between 4–10 μm in length, whereas those grown on silicon were longer (∼15–20 μm). The primary growth mechanism observed was base growth, although some cap growth did occur. Based on the results of this study, it is now possible to carefully control the synthesis conditions to produce carbon nanotubes that possess specific electrical properties that suit the desired application. 相似文献
15.
Christophe Laurent Geoffroy Chevallier Alicia Weibel Alain Peigney Claude Estournès 《Carbon》2008,46(13):1812-1816
Bulk samples of double-walled carbon nanotubes are prepared for the first time. The best spark plasma sintering conditions are (1100 °C, 100 MPa). Raman spectroscopy and scanning electron microscopy show that the nanotubes are undamaged. The density is equal to 1.29 g cm−3 and the pores are all below 6 nm in diameter. The electrical conductivity is equal to 1650 S cm−1. The transverse fracture strength is equal to 47 MPa. 相似文献
16.
Array geometry, size and spacing effects on field emission characteristics of aligned carbon nanotubes 总被引:1,自引:0,他引:1
Y.M. Wong W.P. Kang J.L. Davidson B.K. Choi W. Hofmeister J.H. Huang 《Diamond and Related Materials》2005,14(11-12):2078
Microwave plasma-enhanced chemical vapor deposition (MPECVD) has been shown capable of producing vertically aligned mutli-walled CNTs as a result of self-bias of the microwave plasma. These CNTs are relevant to field emission applications. However, it is also known that closely packed or mat-like CNTs are not effective field emitters due to field screening effects among neighboring tubes. In this study, an approach whereby “micro-” patterning of CNT arrays, adjusting their geometry, size and array spacing by conventional photolithography, rather than “nano-” patterning a single CNT by electron-beam lithography, is employed to fabricate efficient emitters with enhanced field emission characteristics. MPECVD with catalysts are used on Si substrate to fabricate micropatterned vertically aligned CNT arrays with various geometries, sizes and spacing. The field emission results show that a circular array with 20 μm spacing has the lowest turn-on field of 2 V/μm at 1 μA/cm2 and achieves the highest current density of 100 μA/cm2 at 3 V/μm. Investigation on the array spacing effect shows that 10 × 10 μm CNT square array with an array spacing of 20 μm displays the lowest turn-on field of 9 V/μm and achieved a very high current density of 100 mA/cm2 at 20 V/μm. Furthermore, the results suggest that the array spacing of the 10 × 10 μm CNT square array can be reduced to at least 20 μm without affecting the field enhancement factor of the emitter. The results clearly indicate further optimization of spacing in the arrays of CNT emitters could result in lower turn-on field and higher current density. 相似文献
17.
The effect of titanium (Ti) coating over the surface of carbon nanotubes (CNTs) on field emission characteristics was investigated. Vertically aligned CNTs were grown by inductively-coupled plasma-enhanced chemical vapor deposition (ICP-CVD). In order to reduce the screening effect of electric field due to densely packed CNTs, as-grown CNTs were partly etched back by DC plasma of N2. Ti with various thicknesses from 5 nm to 150 nm was coated on CNTs by a sputtering method. Since thick Ti coating with thickness of 100 nm or more resulted in the shape of a metal post by merging an individual CNT in a bundle, it was inadequate to a field emission application. On the other hand, thin Ti-coated CNTs with thickness of 10 nm or less showed a lower turn-on field, a higher emission current density, and improved emission uniformity compared with pristine CNTs. The improved emission performance was mainly attributed to the low work function of Ti and the reliable and lower resistance contact between CNTs and substrates. 相似文献
18.
The induced electric-field has been applied to measure the elastic modulus of carbon nanotubes. However, the vibrational modes of the multi-walled carbon nanotubes are quite different from those of the single-walled carbon nanotubes. Analysis of the vibration characteristics of double-walled carbon nanotubes (DWCNTs) with simply supported boundary condition are carried out based on Euler–Bernoulli beam theory. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. It is found that the vibrational modes of DWCNTs are noncoaxial intertube vibrations, and the deflections of the inner and outer nanotubes can occur in the same or in opposite deflections. In the same vibrational mode, the resonant frequencies of DWCNTs with deflections between the inner and outer nanotubes in the same direction are smaller than those of DWCNTs with the opposite deflections. 相似文献
19.
Lixiang Li 《Carbon》2005,43(3):623-629
Double-walled carbon nanotubes (DWNTs) were synthesized in a large scale by a hydrogen arc discharge method using graphite powders or multi-walled carbon nanotubes/carbon nanofibers (MWNTs/CNFs) as carbon feedstock. The yield of DWNTs reached about 4 g/h. We found that the DWNT product synthesized from MWNTs/CNFs has higher purity than that from graphite powders. The results from high-resolution transmission electron microscopy observations revealed that more than 80% of the carbon nanotubes were DWNTs and the rest were single-walled carbon nanotubes (SWNTs), and their outer and inner diameters ranged from 1.75 to 4.87 nm and 1.06 to 3.93 nm, respectively. It was observed that the ends of the isolated DWNTs were uncapped and it was also found that cobalt as the dominant composition of the catalyst played a vital role in the growth of DWNTs by this method. In addition, the pore structures of the DWNTs obtained were investigated by cryogenic nitrogen adsorption measurements. 相似文献