首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Xiaoju Lu  Cheng Li  Shu Yang  Lifen Zhang 《Polymer》2007,48(10):2835-2842
At room temperature atom transfer radical polymerization (ATRP) of N-vinylpyrrolidone (NVP) was carried out using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra-azacyclo-tetradecane (Me6Cyclam) as ligand in 1,4-dioxane/isopropanol mixture. Methyl 2-chloropropionate (MCP) and copper(I) chloride were used as initiator and catalyst, respectively. The polymerization of NVP via ATRP could be mediated by the addition of CuCl2. The resultant poly(N-vinylpyrrolidone) (PNVP) has high conversion of up to 65% in 3 h, a controlled molecular weight close to the theoretical values and narrow molecular weight distribution between 1.2 and 1.3. The living nature of the ATRP for NVP was confirmed by the experiments of PNVP chain extension. With PNVP-Cl as macroinitiator and N-methacryloyl-N′-(α-naphthyl)thiourea (MANTU) as a hydrophobic monomer, novel fluorescent amphiphilic copolymers poly(N-vinylpyrrolidone)-b-poly(N-methacryloyl-N′-(α-naphthyl)thiourea) (PNVP-b-PMANTU) were synthesized by ATRP. PNVP-b-PMANTU copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The results revealed that PNVP-b-PMANTU presented a blocky architecture.  相似文献   

2.
Ying Zhao 《Polymer》2006,47(22):7702-7710
In this study, a novel salt-, pH- and temperature-responsive semi-interpenetrating network (semi-IPN) hydrogel, composed of poly(aspartic acid) (PAsp) and poly(acrylic acid) (PAAc), was prepared. PAsp/PAAc semi-IPN hydrogel being ionic in nature, the swelling behavior was significantly influenced by various swelling medium. The structure of the triply responsive hydrogel was studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the salt-, temperature- and pH-sensitivities were investigated through measuring equilibrium swelling ratios in various environmental solutions. The results indicate that there is a structure of polyelectrolyte complex in the hydrogel, and that the responsive behaviors of this hydrogel to alternating changes in inorganic salt (different physiological bio-fluids), pH and temperature are improved because of the incorporation of PAsp. In addition, during the repeatable swelling and shrinkage period, the semi-IPN hydrogel shows suitable mechanical strength. The salt-, pH- and temperature-responsive hydrogel will have wider applications in biomedical areas.  相似文献   

3.
The spatial inhomogeneity in poly(acrylamide) (PAAm) gels of various crosslink densities has been investigated with the static light scattering measurements. The gels were prepared using N,N′-methylenebis(acrylamide) (BAAm) as a crosslinker at a fixed initial monomer concentration but at various crosslink densities. Ammonium persulfate-N,N,N′,N′-tetramethylethylenediamine (TEMED) redox initiator system was used to initiate the polymerization reactions as well as to create charged groups in the aged gels. The gels were characterized by elasticity tests and by light scattering measurements at a gel state just after their preparation. Elasticity measurements show that 91-94% of the crosslinker molecules used in the hydrogel preparation were wasted in ineffective crosslinks. Debye-Bueche analysis of the light scattering data indicates frozen concentration fluctuations within the gel samples, which increase continuously with increasing crosslink density of the hydrogels. This phenomenon was explained with the multiple crosslinking reactions leading to the formation of highly crosslinked regions in the final hydrogel. The extent of concentration fluctuations was found to decrease drastically with increasing time of aging of gels in the synthesis reactor, indicating that the hydrolysis of amide groups into carboxylate anions facilitates the homogenization of the gel samples. A thermodynamic model was developed to explain the experimental observations in terms of the osmotic pressure of counterions in the aged gels.  相似文献   

4.
Xingfeng Zhu  Wei Chen  Jian Dong 《Polymer》2010,51(14):3054-408
Poly(N-vinylpyrrolidone) (PVP) hydrogels have become increasingly important materials for pharmaceutical and biomedical applications. UV-light initiated oxidative crosslinking of PVP represents a novel method for producing PVP based hydrogel materials. However, the mechanism of the gelation by this approach is poorly understood. In this study, the reaction mechanism for the crosslinking process is investigated by FTIR, Raman, and solid-state CP/MAS NMR techniques. Both FTIR and Raman spectra indicate that in the process of free radical oxidative crosslinking, the pyrrolidone ring is partially transformed into a succinimide ring. Solid-state NMR data have confirmed this change, and provided evidence that stable intermediates of 4-hydroperoxy-pyrrolidone (PVP-OOH) and its accompanied 4-hydroxy-pyrrolidone (PVP-OH) are formed. The pyrrolidone hydroperoxide intermediate can account for the efficient crosslinking, producing a sufficient level of macroradicals to form stable hydrogels.  相似文献   

5.
Poly(ethylene oxide)-grafted poly(N-isopropylacrylamide) networks (PNIPAAm-g-PEO) were prepared via the reversible addition-fragmentation chain transfer polymerization (RAFT) of N-isopropylacrylamide with trithiocarbonate-terminated poly(ethylene oxide) and N,N′-methylenebisacrylamide as the chain transfer agent and the crosslinking agent, respectively. It was found that the PNIPAAm-g-PEO copolymer networks were microphase-separated and that PEO microdomains were dispersed in the PNIPAAm matrix. The hydrogel behavior of the PNIPAAm-g-PEO networks was investigated using swelling, deswelling and reswelling tests. The PNIPAAm-g-PEO hydrogels displayed faster responses to external temperature changes than did the control PNIPAAm hydrogel.  相似文献   

6.
Complexes of polyvinylpyrrolidone–polyacrylic acid (PVP–PAA) photopolymerized from a mixture of PVP and acrylic acid (AA) were characterized by means of differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectrometry. The swelling of PVP–PAA semi-interpenetrating network (semi-IPN) films was studied in various pH media. The results showed that swelling in 0.1N HCl solution and pH 3.0 phosphate buffer was strikingly different from that in the pH 6.0 phosphate buffer. Caffeine release rate from the semi-IPN film followed Fick's Law. The rate of release was higher in dissolution media having pH above a critical value of about 3.8. Control of caffeine release from the semi-IPN film was realized by changing cyclically the pH of dissolution medium between 0.1N HCl solution and pH 6.0 phosphate buffer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 921–930, 1998  相似文献   

7.
Lei Li 《Polymer》2005,46(14):5133-5139
Ultra-fine polyelectrolyte fibers have been generated from electrospinning of poly(acrylic acid) in aqueous and DMF solutions. The fiber diameters ranged from 80 to 500 nm and increased with increasing solution concentrations and electrospinning voltages. The fibers generated from the aqueous solutions were more homogeneous in sizes, especially when NaCl or NaOH was added. Higher voltages in electrospinning of the aqueous solutions also resulted in fibers with larger heat capacity in the glass transition region, and higher dehydration temperatures. These polyelectrolyte fibers could be rendered water-insoluble by incorporating β-cyclodextrin (at 20 wt% of PAA) in the aqueous solution, then heat-induced crosslinking was performed at 140 °C for 20 min. The resulting hydrogel fibers showed strongly pH-responsive swelling behaviors.  相似文献   

8.
Swelling degrees of poly(N-vinyl-2-pyrrolidone) (PVP) gel were measured in aqueous salt solutions and in water/organic solvent mixtures to find marked ion- and solvent-specificities. In order to investigate any correlation of those specificities with hydration or solvation of PVP, IR spectra band of the CO group was monitored by means of ATR method both for PVP gel and the relevant solution systems. Dependence of the peak frequency on the swelling ratio suggested that hydration of PVP carbonyl group in deswollen gel systems is different from that in the corresponding solution systems. In the solution systems, PVP carbonyl band showed a high-wavenumber shift for deswollen systems, which can be well correlated with changes in water proton charge through ionic hydration and with Gutmann's acceptor number of organic solvents. In the deswollen gel systems, the CO band showed a low-wavenumber shift, suggesting a strong hydration or doubly hydrated state. This unexpected behavior was interpreted by assuming an intermolecular hydrogen bond of two carbonyl groups intermediated by water molecules.  相似文献   

9.
Poly(acrylic acid) (PAA) and poly(vinyl pyrrolidone) (PVP) were chosen to prepare polymer complex and blends. The complex was prepared from ethanol solution and the blends were prepared from 1-methyl-2-pyrrolidone solution. DSC results show that the Tgs of the PAA/PVP blends lie between those of the two constituent polymers, whereas Tg of the PAA/PVP complex is higher than both blends and the two constituent polymers. TGA results show that degradation temperature, Td, of PAA increases upon adding PVP in the blend, but thermal stability of the complex is higher than that of the blends as reflected by the higher Td. Both FTIR and high-resolution solid state NMR show strong hydrogen bonding between PAA and PVP by showing significant chemical shift. The T(H) measurement shows that the homogeneity scale for the blend is at ∼20 Å and that for the complex is ∼15 Å.  相似文献   

10.
Chunyi Tang  Haiqing Liu 《Polymer》2007,48(15):4482-4491
Random and alternating poly(styrene-co-maleic anhydrides) (SMAs) with respective maleic anhydride (MAh) content of 32 and 48% were synthesized through radical polymerization. SMA nanofibers with diameter down to 180 nm were generated by electrospinning from solvents acetone, dimethylformamide (DMF), and their mixtures. Fiber diameter increased dramatically when the SMA concentration in the spinning solution reached to a critical point where the SMA chains are extensively entangled. The diameter of SMA nanofiber decreased with increasing DMF content in the mixture, but beads are often accompanied as DMF content is over 50%. The optimum acetone/DMF ratio was found to be 2:1, in which continuous electrospinning was achieved and bead-free nanofibers were obtained. SMA nanofibers with MAh content of 32 and 48% were crosslinked with diethyleneglycol and subsequently hydrolyzed in NaOH/EtOH to turn SMA into crosslinked sodium form SMA (SMA-Na) hydrogel nanofiber. These hydrogel nanofibers were able to retain fiber form after immersing in water for 24 h. Their water absorption ratio was up to 37.6 and 8.2 g/g in distilled water and 0.25 N NaCl aq. solution, respectively.  相似文献   

11.
An interpenetrating polymer network (IPN) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) was prepared by the sequential IPN method. The equilibrium swelling ratio and bending behavior under electric fields of the IPN hydrogel were measured in an aqueous NaCl solution. The IPN exhibited a high equilibrium swelling ratio, in the range 280–380%. When the IPN in aqueous NaCl solution was subjected to an electric field, the IPN showed significant and quick bending toward the cathode. The IPN hydrogel also showed stepwise bending behavior, depending on the electric stimulus. In addition, the ionic conductivity of the IPN hydrogel was measured using dielectric analysis, and its conductive behavior followed the Arrhenius equation. The conductivity of the IPN hydrogel and the activation energy for the form of the IPN were 1.68 × 10?5 S/cm at 36°C and 61.0 kJ/mol, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 890–894, 2003  相似文献   

12.
Hydrogels for biomedical purposes, made from synthetic polymers as starting materials and free of co-adjuvant molecules, have been produced almost exclusively by high-energy radiative processes. On the other hand, UV photocrosslinking of such materials has been used in conjunction of monomers and/or photoinitiators. This work was addressed to the analysis of poly(N-vinyl-2-pyrrolidone) (PVP) submitted to direct photocrosslinking in aqueous solution, using low pressure Hg lamp (λem=254 nm). The process efficiency was evaluated, and the properties of the hydrogel formed were determined. The product thus formed has similar micro- and macroscopic properties, as compared to hydrogels produced by high-energy radiation and presents no cytotoxicity. These results demonstrated the viability of using this method as a versatile alternative to hydrogel production, broadening the possibility of its production where high-energy radiation facilities are not available.  相似文献   

13.
Premang R. Buch 《Polymer》2005,46(15):5524-5532
Novel diamines such as N,N′-bis(aminoaryl)terephthalamido-2-carboxylic acids (BATCA), which contain primary amine, amide and carboxylic acid groups and are soluble in dilute aqueous NaOH solution, were synthesized by reacting aromatic diamines with trimellitic anhydride chloride in dimethylformamide. Poly(amide imide)s containing 3:1 ratio of amide:imide groups in the polymer chain were prepared by low temperature solution polymerization of BATCAs with isophthaloyl chloride or terephthaloyl chloride in dimethylformamide at 5-10 °C to form poly(amide amic acid)s, and followed by treating with a mixture of triethylamine and acetic anhydride. The PAIs were soluble in polar aprotic solvents like dimethylformamide, dimethylacetamide, dimethylsulphoxide and N-methylpyrrolidone, and have inherent viscosities in the range of 0.30-0.66 dL/g. The PAIs were characterized by IR, 1H NMR and 13C NMR techniques. Thermogravimetric analysis (TGA) has shown that the initial decomposition temperatures of the polymers are in the range of 250-440 °C, depending upon the structures of diamine and diacid chloride. The glass transition temperatures of the PAIs are in the range of 128-320 °C. The IDT and Tg values of the polymers containing terephthaloyl unit are higher by about 20-40 °C than those of the polymers with isophthaloyl unit. BATCA could be utilized for the preparation of thin film composite membranes having PAA/PAI barrier layer on PES by in situ interfacial polymerization with IPC/TPC/TMC.  相似文献   

14.
The phosphorylated poly(vinyl alcohol) (P‐PVA) samples with various substitution degrees were prepared through the esterification reaction of PVA and phosphoric acid. By using chitosan (CTS), acrylic acid (AA) and P‐PVA as raw materials, ammonium persulphate (APS) as an initiator and N,N‐methylenebisacrylamide as a crosslinker, the CTS‐g‐PAA/P‐PVA semi‐interpenetrated polymer network (IPN) ssuperabsorbent hydrogel was prepared in aqueous solution by the graft copolymerization of CTS and AA and followed by an interpenetrating and crosslinking of P‐PVA chains. The hydrogel was characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques, and the influence of reaction variables, such as the substitution degree and content of P‐PVA on water absorbency were also investigated. FTIR and DSC results confirmed that PAA had been grafted onto CTS backbone and revealed the existence of phase separation and the formation of semi‐IPN network structure. SEM observations indicate that the incorporation of P‐PVA induced highly porous structure, and P‐PVA was uniformly dispersed in the polymeric network. Swelling results showed that CTS‐g‐PAA/P‐PVA semi‐IPN superabsorbent hydrogel exhibited improved swelling capability (421 g·g?1 in distilled water and 55 g·g?1 in 0.9 wt % NaCl solution) and swelling rate compared with CTS‐g‐PAA/PVA hydrogel (301 g·g?1 in distilled water and 47 g·g?1 in 0.9 wt % NaCl solution) due to the phosphorylation of PVA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Temperature- and pH-responsive membranes prepared from blends of poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide)(PVDF-g-PNIPAM) copolymer and poly(acrylic acid) (PAA) microgels in N,N-dimethylformamide (DMF) solution by phase inversion method. PAA microgels help PNIPAM chains largely enrich onto membrane surface. Furthermore, adding PAA microgels increases the porous size, porosity and hydrophilic property of the blend membrane. The membranes show temperature-sensitivity between 30 and 35 °C, and pH-sensitivity between pH 3 and 5 on permeating aqueous solutions. Meanwhile, the blend membranes keep good antifouling property even if one of the hydrophilic components becoming hydrophobic in response to temperature or pH stimuli, which is superior to single-sensitive PVDF membrane.  相似文献   

16.
The influence of the swelling history on the swelling behavior of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] P[(N-iPAAm)-co-(MAA)] random copolymers hydrogels synthesized by free radical polymerization in solution of N-iPAAm and MAA comonomers crosslinked with tetraethylene glycol dimethyl acrylate (TEGDMA) has been studied. The swelling behavior under pH 7 at 18, 29, 39 and 49 °C of this series of copolymers, previously soaked either at pH 2 or 7 has been investigated. The swelling kinetics of these two series of samples displays different behavior as function of the composition and temperature. However, the equilibrium swelling values only show slight dependences on the previous soaking pH and temperature. When samples are soaked at pH 7, then the swelling at pH 7 follows a first order kinetics, irrespective of the copolymer composition or the temperature at which the experiment has been carried out. In this case, the swelling process is very fast and depends only slightly on temperature. The first order rate constant increases with the MAA content in the hydrogel. Furthermore, the swelling rate of copolymer hydrogels soaked at pH 2, show strong dependence on composition and temperature. They follow an autocatalytic swelling kinetics due to the disruption of hydrogen bond arrangements. An initial slow water uptake is followed by an acceleration process, in which water molecules inside the gel help the next water molecules to come in. Two rate constants, a first-order rate constant and an autocatalytic one have been obtained from the kinetics analysis. They have revealed different temperature dependence which may be due to a balance between hydrophobic and hydrogen bond interactions. The temperature dependence of the swelling kinetics is stronger and more complex for copolymers treated under pH 2 than for copolymers soaked under pH 7.  相似文献   

17.
Regiane da Silva 《Polymer》2007,48(14):4114-4122
Hydrogels of poly(N-isopropylacrylamide) co-polymerized with acrylic acid [P(NIPAAm-co-AAc)] were synthesized with cross-linking degrees of 2-7% using (N,N′-methylenebisacrylamide). SEM micrographs revealed that the morphology of dry hydrogels changes from interconnected spherical pores to channel-like pores, with the change in the cross-linking degrees from 3 to 5%. The change in morphology is associated with a significant change in the swelling ratio. It was found that the diffusion rates and permeabilities of methylene blue (MB) through the hydrogel with channel-like pores are significantly higher if the main axes of the pores are oriented parallel to the flow of MB molecules, than if it is oriented perpendicularly. These results show that different morphologies can be obtained by controlling the cross-linking degree of P(NIPAAm-co-AAc) hydrogels in a narrow range around 5% and by performing the polymerization reaction in moulds placed in horizontal and vertical positions, opening a new perspective for modulating their properties in applications as matrices for controlled release of drugs or as membranes for separation processes.  相似文献   

18.
The phase transition in poly(N-vinylpyrrolidone) (PVP) aqueous solutions is shown to occur at heating upon addition of organic acids such as isobutyric, isovaleric, and, especially, trichloroacetic (TCA) ones. The cloud point temperature (Tc) of PVP solutions drops from 70 to 6 °C when the TCA concentration rises from 0.2 to 0.3 mol/l. A decrease in Tc is even more drastic when HCl is also added though HCl addition to the system without TCA does not result in phase separation. These phenomena are explained by the reversible coordination between the non-ionized form of TCA and PVP units via hydrogen bonding. An increase in the medium acidity depresses TCA dissociation, resulting in an increase in PVP-TCA associate concentration. Calculations based on the pKa values of TCA confirm this suggestion. The similar behavior is observed with poly(N-vinylcaprolactam) systems. The amount of TCA bound to PVP has been determined by means of separation of the precipitate by centrifugation at temperatures above Tc and subsequent titration of TCA in the polymer with NaOH. It is shown that the precipitate contains one TCA molecule per 3-6 VP units, this value decreasing down to 1.25-2 upon HCl addition to the system.  相似文献   

19.
When the poly(acrylic acid) (PAA) gel-1,8-diazabicyclo-[5,4,0]-7-undecene salt (DAA) was placed in N-methyl-2-pyrrolidone containing an excess of alkylamine and triphenylphosphine, selective amidation took place from the outside to give the corresponding poly(N-alkylacrylamide) gel containing a C3 alkyl chain through a DAA-poly(N-alkylacrylamide) type gel capsule consisting of a hydrophilic unreacted core part and an amidated shell layer. The amidation proceeded by a reaction mechanism similar to the unreacted-core model. Thermal properties of the resulting poly(N-alkylacrylamide) gels such as deswelling behavior and equilibrium swelling ratio in water as a function of temperature were measured. The release of methyl orange from a poly(N-alkylacrylamide) gel and the gel capsule was also examined. PAA-poly(N-alkylacrylamide) type gel capsules containing a PAA core part and thermosensitive poly(N-alkylacrylamide) shell layer, prepared by the neutralization of DAA-poly(N-alkylacrylamide) type gel capsules, showed on-off chemical release characteristics in response to stepwise temperature changes across the LCST.  相似文献   

20.
Self-assembly of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide) [P(tBA-co-AA)-b-PNIPAM], which was obtained from part hydrolysis of PtBA-b-PNIPAM synthesized by sequential atom transfer radical polymerization (ATRP) was studied. Thermo- and pH-responsive core-shell-corona (CSC) micelles with different structures were formed from (PtBA-co-PAA)-b-PNIPAM in aqueous solution. At pH 5.8 and 25 °C, the block copolymer self-assembled into spherical core-shell micelles with hydrophobic PtBA segments as the core, hydrophilic PAA/PNIPAM segments as the mixed shell. Increasing temperatures, core-shell micelles converted into CSC micelles with PtBA as the core, collapsed PNIPAM as the shell and soluble PAA as the corona. Moreover, decreasing pH at 25 °C, PAA chains collapsed onto the core resulting in CSC micelles with PtBA as the core, PAA as the shell and PNIPAM as the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号