首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Interpenetrating polymer networks (IPNs) combining polyisobutene (PIB) and poly(methyl methacrylate) (PMMA) networks were prepared using a in situ strategy. PIB networks were formed by isocyanate—alcohol addition between the hydroxyl end groups of telechelic dihydroxy-polyisobutene and an isocyanate cross-linker, catalyzed by dibutyltindilaurate (DBTDL). PMMA networks were obtained from free-radical co-polymerization of methyl methacrylate (MMA) with ethylene glycol bismethacrylate (EGDM) in the presence of dicyclohexyl peroxydicarbonate (DCPD) as the initiator. The synthesis of each network during the IPN formation was followed by FTIR spectroscopy. The highest degree of interpenetration is obtained by forming the PIB network first. The corresponding transparent IPNs exhibit two mechanical relaxation temperatures as determined by Dynamic mechanical thermal analysis (DMTA), corresponding to those of PMMA and PIB enriched phases. Mechanical properties of PIB networks are tremendously improved by the presence of PMMA network in such IPN architecture.  相似文献   

2.
Interpenetrating polymer networks (IPNs) combining polyisobutene (PIB) and poly(cyclohexyl methacrylate) (PCHMA) networks were prepared using an in situ strategy. PIB networks were formed by alcohol-isocyanate addition between the hydroxyl end groups of telechelic dihydroxypolyisobutene and an isocyanate cross-linker, catalyzed by dibutyltindilaurate (DBTDL). PCHMA networks were obtained from free-radical copolymerization of cyclohexyl methacrylate (CHMA) with ethylene glycol bismethacrylate (EGDM) in the presence of dicyclohexyl peroxydicarbonate (DCPD) as the initiator. The network formations into the IPN architecture were followed by FTIR spectroscopy. In a large composition range, transparent IPNs exhibit two mechanical relaxation temperatures as determined by dynamic mechanical thermal analysis (DMTA), corresponding to those of a PIB enriched phase and of one interpenetrating phase containing the PCHMA network. This morphology was confirmed by IPN surface analysis by AFM. As expected, mechanical properties of PIB networks are improved by the presence of PCHMA network in such IPN architectures.  相似文献   

3.
The entrapment of linear polyisobutene (PIB) in semi-IPN architecture is shown to be as efficient as it is in cross-linkable telechelic PIB based full IPN architectures as far as the suppression of cold flow is concerned. Indeed, homogeneous linear PIB/cross-linked polycyclohexylmethacrylate (PCHMA) semi-IPNs containing from 20 to 70 wt% PIB and synthesized without solvent show no cold flow and higher mechanical properties than those of linear PIB or 50 wt% PIB containing blend. In addition, the particular barrier properties toward gas and water are preserved. Those properties arise from the phase co-continuity morphology of the semi-IPN materials which moreover compares with that of corresponding IPNs. A systematic study of the synthesis conditions (nature of the initiator, temperature, cross-linking density) showed that the reacting mixture viscosity is an important parameter that controls the phase separation degree in the final material.  相似文献   

4.
The viscoelastic and mechanical properties and the morphology of polyurethane (PUR)/ olystyrene (PS) interpenetrating polymer networks (IPNs) containing ionic groups have been investigated. Dynamic mechanical thermal analysis (DMTA) revealed a pronounced change in the viscoelastic properties upon the introduction of ionic groups. For the 70 : 30 and 60 : 40 PUR/PS IPN compositions, the DMTA data changed from a dominant PUR to a dominant PS loss factor peak. Higher intertransition loss factor values indicated a significant improvement of IPN component mixing with increasing ionic content. The stress at break values increased only moderately, whereas sharp rises in Young's modulus and hardness values were found at 2 wt % ionic groups. At the same time, the strain at break values decreased by half. Scanning and transmission electron microscopy (TEM) indicated a grossly phase-separated morphology for the 70 : 30 PUR/PS IPN without ionic groups. With increasing methacrylic acid (MAA) content, the PS phase domain sizes decreased. At 2 wt % of ionic groups, a TEM micrograph showed interconnected PS phase domains resembling a network structure. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1973–1985, 1998  相似文献   

5.
In this article a modified polydimethylsiloxane (PDMS) blended polystyrene (PS) interpenetrating polymer network (IPN) membranes supported by Teflon (polytetrafluoroethylene) ultrafiltration membrane were prepared for the separation of ethanol in water by pervaporation application. The relationship between the surface characteristics of the surface‐modified PDMS membranes and their permselectivity for aqueous ethanol solutions by pervaporation are discussed. The IPN supported membranes were prepared by sequential IPN technique. The IPN supported membrane were tested for the separation performance on 10 wt % ethanol in water and were characterized by evaluating their mechanical properties, swelling behavior, density, and degree of crosslinking. The results indicated that separation performance, mechanical properties, density, and the percentage of swelling of IPN membranes were influenced by degree of crosslink density. Depending on the feed temperature, the supported membranes had separation factors between 2.03 and 6.00 and permeation rates between 81.66 and 144.03 g m?2 h?1. For the azeotropic water–ethanol mixture (10 wt % ethanol), the supported membrane had at 30°C a separation factor of 6.00 and a permeation rate of 85 g m?2 h?1. Compared to the PDMS supported membranes, the PDMS/PS IPN supported blend membrane ones had a higher selectivity but a somewhat lower permeability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Hydrogels are suitable biomaterials for cartilage tissue engineering due to the excellent ability to retain water to provide suitable environment for the tissue, however, the insufficient mechanical properties often prevent their wider applications. The objective of this study was to fabricate biocompatible hydrogels with good mechanical performance, high-water content, and porous microstructure for cartilage regeneration. Photocrosslinked hydrogels are one of the most widely used systems in tissue engineering due to the superior mechanical properties. In this study, block copolymer, poly(ε -caprolactone)-poly(ethylene)-poly(ε -caprolactone) diacrylate (PCL–PEG–PCL; PEC), was prepared by ring-opening polymerization, and PEC hydrogels were made through free radical crosslinking mechanism. Agarose network is chosen as another component of the hydrogels, because of the high-swelling behavior and cartilage-like microstructure, which is helpful for chondrocytes growth. Interpenetrating networks (IPN) were fabricated by diffusing PEC into agarose network followed by photo-crosslinking process. It was noted that incorporating PEC into the agarose network increased the elastic modulus and the compressive failure properties of individual component networks. In addition, high-swelling ratio and uniform porosity microstructures were found in the IPN hydrogels. IPN and PEC showed low cytotoxicity and good biocompatibility in elution test method. The results suggest promising characteristics of IPN hydrogels as a potential biomaterial for cartilage tissue engineering.  相似文献   

7.
BACKGROUND: Polystyrene/polystyrene (PS/PS) interpenetrating polymer networks (IPNs) represent ideal homo‐IPNs. Whether phase separation occurs in this system has been a long‐standing problem, which is closely related to the self‐organization mechanism in IPN formation and is important to the exploration of new polymer morphologies and properties by topological isomerism. RESULTS: A series of bead samples of PS/PS sequential IPNs with the same nominal divinylbenzene contents were synthesized by suspension polymerization, followed by sulfonation. Scanning electron micrographs and energy‐dispersive X‐ray mapping show unique distinctive topography on both surfaces and fractured surfaces and large heterogeneity in sulfonation of the PS/PS IPN beads, which for the first time provide visual evidence for dual‐phase continuity in PS/PS IPNs. CONCLUSION: The phase separation behavior is proposed to be due to hydrodynamic screening, architectural asymmetry and excluded volume interactions between network I and the precursor chains of network II. This is considered to represent pure IPN effects in sequential formation and may shed light on the general constitution mechanism and molecular design of IPN materials. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Tough hydrogels receive continuous attention because of their promising applications in many fields. Herein, tough hydrogels of poly (N,N‐dimethylacrylamide) (PDMAA)/alginate (SA) are prepared, with interpenetrating network (IPN) and of PDMAA/chitosan (CS) with semi‐IPN microstructure, respectively. The toughening of the hydrogel by incorporating natural polymers is studied by compressing tests and dynamic mechanical analyses. Moreover, cyclic load–unload compressing of the two types of hydrogels are performed at low strains and under relatively high strains, in order to compare their strength and anti‐fatigue properties. The results indicate that the mechanical strength can be markedly improved upon addition of the natural polymers, and the IPN hydrogel of PDMAA/SA reveals much higher mechanical performances but is less stable. However, the semi‐IPN hydrogel of PDMAA/CS displays excellent anti‐fatigue stability, but with relatively low strength. Swelling tests, scanning electron microscopy, and Fourier transform infrared spectroscopy are carried out to study the microstructures of the hydrogels, which are carefully analyzed to understand the difference in mechanical performances of those hydrogels. The results suggest that the presence of sacrificial unit and higher chain density in the IPN are helpful for toughening hydrogels, while the semi‐IPN network is beneficial to improve the energy dissipation efficiency.  相似文献   

9.
The excellent synergistic effect of physical/mechanical properties of polyurethane/epoxy (PU/EP) interpenetrating polymer network (IPN) and the validity of nanofilling have one potential to improve the wear resistance of polymeric materials. With the aim of practical application, PU/EP IPN nanocomposites are prepared with nanodiamond (ND) as a reinforcing additive. Results showed the uniform thermal stability and the excellent compatibility between PU and EP in ND‐hybridized PU/EP IPN. Simultaneously, ND particles work as crosslinked points improving the physical/mechanical properties of ND‐hybridized PU/EP IPN, especially the wear resistance. The measurement of tribological property and the scanning electron microscope indicated that the wear resistance is able to be improved a lot by the formation of IPN and by the addition of ND. Consequently, the tribological mechanism of PU/EP IPN nanocomposites comes into being. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40244.  相似文献   

10.
聚氨酯/环氧树脂互穿网络聚合物硬质泡沫机械性能研究   总被引:3,自引:0,他引:3  
采用同步法合成了聚氨酯/环氧树脂互穿网络聚合物(PU/EP IPN)硬质泡沫,对机械性能进行了研究。结果表明,与纯聚氨酯硬质泡沫相比,PU/EP IPN硬质泡沫的压缩强度和弯曲强度明显提高,在PU/EP IPN硬质泡沫中,随环氧树脂含量增加,PU/EP IPN硬质泡沫压缩强度和弯曲强度随之增大,当E-39D质量分数增加到24.2%时,PU/EP IPN硬质泡沫压缩强度和弯曲强度出现最大值;PU/EP IPN硬质泡沫机械强度随材料密度的增大而增加;随着环氧树脂中环氧值的增加,PU/EP IPN硬质泡沫的压缩强度、弯曲强度和拉伸强度均呈逐渐升高的趋势。  相似文献   

11.
Attempts to extend the IPN technology to liquid crystalline polymer (LCP) systems have been made in search for a new approach for enhancing the compatibility of liquid crystalline polymer with engineering thermoplastics. A new type of interpenetrating polymer network based on liquid crystalline polymer : semi‐interpenetrating liquid crystalline polymer network comprising liquid crystalline polymer PET/60PHB (LCP) and crosslinked polystyrene (PS) (for short: semi‐ILCPN LCP/PS) has been successfully prepared. The compatibility and thermal properties of the semi‐ILCPN LCP/PS with different amount of crosslinking agent were investigated by FTIR, SEM, DSC, and TGA, respectively. Furthermore, the possible application of the semi‐ILCPN LCP/PS as a new kind of compatibilizer in PPO/LCP blends was also studied and discussed. Well‐compatibilized PPO/LCP composites with considerably improved mechanical properties were obtained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1141–1150, 2000  相似文献   

12.
From dynamic mechanical and DSC studies, we have concluded that resorcinolformaldehyde-latex (RFL) adhesive systems are two-phase materials. This is consistent with the limited electron microscopy work published on these polymers. However, while finer details of RFL morphology have never been resolved by electron microscopy, a comparison of the dynamic mechanical results with theoretical models provides evidence that the RFL has an interpenetrating network (IPN) morphology. The resorcinol-formaldehyde thermoset provides a continuous glassy network, while the butadienestyrene-vinyl pyridine terpolymer latex forms a continuous rubbery phase at ordinary use temperatures. The mechanical properties of the IPN are dominated by the volume fraction, chemistry, and thermal history of the RF thermoset. The dynamic mechanical properties of films made from ammonia-containing RFL adhesives are particularly sensitive to thermal history. This is consistent with the long-accepted belief that ammonia forms thermally unstable benzylamine linkages in the RF network.  相似文献   

13.
A series of organic–inorganic hybrid thermosensitive gels with three different structures were prepared from N‐isopropylacrylamide (NIPAAm), and N, N′‐methylenebisacrylamide (NMBA) and tetraethoxysilane (TEOS) [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA, and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol–gel reaction in this study. The effect of different gel structures and coupling agent on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN and with or without existence of TMSPMA as the bridge chain between networks. The NT‐semi‐IPN gel had higher swelling ratio and faster diffusion rate because poly(NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had a poor thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
GAP型PU/PMMA聚合物互穿网络的力学性能研究   总被引:7,自引:0,他引:7  
利用互穿聚合物网络技术 (IPN)对GAP粘合剂进行了力学性能改性 ,研究了组分比、引发剂用量、催化剂用量、固化参数、交联剂用量对以GAP为基体材料的PU/PMMA型IPN力学性能的影响 ;同时用动态力学谱 (DMA)分析了不同组分比下IPN的相容性  相似文献   

15.
α,ω‐Dihydroxy‐polydimethylsiloxane/polystyrene (PDMS/PS) blends were prepared by the solution polymerization of styrene (St) in the presence of α,ω ‐dihydroxy‐polydimethylsiloxane (PDMS), using toluene as solvent and benzoyl peroxide (BPO) as initiator. The PDMS/PS blends obtained by this method are a series of stable, white gums, which were vulcanized to elastomers at room temperature with methyl‐triethoxysilicane (MTES). The use level of MTES was far more than the necessary amount used to end‐link hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed to crosslinked networks, which were similar to SiO2 and acted as filler. Investigations were carried out on the elastomeric materials by extraction measurement, swelling measurement, and scanning electron microscopy. The extraction data show that at each composition the amount of soluble fraction is less than expected and the difference between experimental and theoretical values becomes more and more significant as PS content increases. This is mainly due to the grafting of PS onto PDMS and the entanglement of PS in the interpenetrating polymer network (IPN), which consists of either directly linked PDMS chains or chains linked via PS grafts and is formed by free radical crosslinking of PDMS during the radical polymerization of St. PS grafted on PDMS is insoluble and PS entangled in the IPN is difficult to extract. Both render the soluble fraction to be less than expected. As the St content in preparing PDMS/PS blends increases, the probability of grafting PS onto PDMS also increases, which may subsequently produce a higher crosslinking level of PDMS networks that linked via PS grafts by radical crosslinking. As a result, not only the amount of insoluble PS increases but also PS entangled in the IPN is more difficult to extract. Scanning electron microscopy demonstrates that the elastomer system has a microphase‐separated structure and a certain amount of PS remains in the PDMS networks after extraction, which is in accordance with the extraction data. Moreover, the mechanical properties of the elastormeric materials have been studied in detail. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3542–3548, 2004  相似文献   

16.
Three kinds of polyurethane-poly(methyl methacrylate) (PU–PMMA), that is, linear polymer, block copolymer, and interpenetrating polymer network (IPN), were synthesized by a simultaneous polymerization process, respectively. The effects of several factors such as ultraviolet (UV) setting, heat setting, chemical composition, and physical structure on the morphological structure and mechanical properties of polymers were studied by scanning electron micrograph, dynamic mechanical loss spectrum, and mechanical tests. The results show that PU–PMMA is a partially compatible system with a two-phase structure; the linear polymer has the highest elongation at break, and IPN has the strongest tensile strength, while the block copolymer has poor mechanical properties. In addition, the UV setting block copolymer and IPN system, with regular microphase domain structures, have higher tensile strength and elongation at break than those of heat setting polymers. With MMA content and hard segment in PU increasing, the tensile strength increases, and the elongation decreases. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1363–1369, 1998  相似文献   

17.
A series of organic‐inorganic hybrid thermosensitive gels with three different structures and different contents of tetraethoxysilane (TEOS) were prepared from N‐isopropylacrylamide (NIPAAm), and N,N′‐methylene‐bis‐acrylamide (NMBA) and TEOS [N‐IPN]; NIPAAm, 3‐(trimethoxysilyl) propyl methacrylate (TMSPMA) as coupling agent and TEOS [NT‐IPN]; and NIPAAm, TMSPMA and TEOS [NT‐semi‐IPN] by emulsion polymerization and sol‐gel reaction in this study. The effect of TEOS content on the swelling behavior, mechanical properties, and morphologies of the present gels was investigated. Results showed that the properties of the gels would be affected by the gel networks such as IPN or semi‐IPN, existence of TMSPMA as the bridge chain between networks, and content of TEOS. The NT‐semi‐IPN gel had higher swelling ratio because poly (NIPAAm) moiety in the semi‐IPN gels was not restricted by NMBA network. However, the IPN gels such as N‐IPN and NT‐IPN had good mechanical properties and lower swelling ratio, but had bad thermosensitivity due to the addition of coupling agent, TMSPMA, into the gel system that resulted in denser link between organic and inorganic components. Increasing TEOS content would also reduce the thermosensitivity of the hybrid gels. The morphology showed that IPN gels had partial aggregation (siloxane domain) and showed some denser phases. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
A three dimensional porous hydrogel with suitable biological and mechanical properties are required for bone tissue engineering. Hydrogels of poly(lactic-ethylene oxide fumarate) (PLEOF), crosslinked with poly(ethylene glycol)-diacrylate (PEG-da) have desirable mechanical properties, however, their application for bone regeneration is limited due to the lack of cell motif sites within their structure. The aim of this study was to incorporate a naturally derived polymer such as gelatin into PLEOF hydrogels to promote their biological properties. Interpenetrating polymer network (IPN) was used as an efficient technique to acquire uniform mixture of these two polymers. Additionally gas foaming agents were used to create pores with average diameter of 250 μm in these IPN hydrogels. The concentrations of PEG-da and gelatin were optimized to tune the mechanical strength and degradation properties of these hydrogels. A compression modulus of 500 kPa was achieved for hydrogel fabricated with 400 mg/ml PLEOF, 200 mg/ml PEG-da and 150 mg/ml gelatin. The addition of gelatin to PLEOF elevated the compression modulus by two-fold and decreased the energy loss by 40%. The result of protein analysis demonstrated that IPN substantially enhanced the retention of physically crosslinked gelatin in the 3D structure of hydrogel. More than 50% of gelatin was retained in IPN hydrogel after two weeks of incubation in simulated physiological environment. Preserving gelatin in the hydrogel structure provides cell motif sites for a longer period of time, which is desirable for uniform cell proliferation. In vitro studies showed that primary human osteoblast cells adhered and proliferated in PLEOF-gelatin hydrogel. These results demonstrated the potential of using this IPN hydrogel for bone tissue engineering.  相似文献   

19.
Frédéric Vidal 《Polymer》2006,47(11):3747-3753
Interpenetrating polymer networks combining cellulose acetate butyrate (CAB) and α,ω-divinyl-polydimethylsiloxane (PDMS) in different weight proportions have been synthesized. The synthesis involves a one pot-one shot process in which all components are first mixed together. For each composition, the relative CAB and PDMS network formation rates are adjusted through the concentration of DBTDL used as CAB network formation catalyst. Thus, the chemically independent networks are formed quasi-simultaneously in order to avoid phase separation. The CAB cross-linking density effect on the PDMS/CAB IPN mechanical properties has also been particularly studied. All synthesized IPNs are transparent and only one mechanical relaxation temperature lying between those of the single CAB and PDMS networks is observed by DMTA analysis. These results show that the networks are correctly interpenetrated and no phase separation is observed at the DMTA level. Some mechanical properties of the PDMS network are significantly improved in this IPN combination and their stress-strain behavior has highlighted a synergistic effect arising from the IPN architecture. Thus, these IPNs exhibit many characteristics, which would allow defining them as close to ‘true’ IPNs.  相似文献   

20.
以CR和苯乙烯单体为原料,二乙烯基苯(DVB)为苯乙烯的交联剂,采用分步合成法制备CR/聚苯乙烯(PS)互穿网络共混物。结果表明,苯乙烯用量为50份、交联剂DVB用量为2.5份时,CR/PS互穿网络共混物综合物理性能较好,并出现应力屈服现象,表现出部分塑料性质,FTIR和SEM分析证明在此条件下制备的共混物形成了较完整的互穿网络结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号