首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and swelling behaviour of hydrophilic epoxy networks prepared from α,ω-diamino terminated poly(oxypropylene)-block-poly(oxyethylene)-block-poly(oxypropylene) and diglycidyl ether of brominated Bisphenol A in dependence on the initial molar ratio of reactive amino and epoxy groups has been investigated by small- and wide-angle X-ray scattering (SAXS and WAXS), differential scanning calorimetry (DSC) and dynamic mechanic analysis (DMA). Anomalous swelling behaviour of the networks in water has been found. The anomaly is attributed to the changing microphase separation in the networks controlled by their composition and crosslinking density, and inhomogeneous swelling on nanometer space scale.  相似文献   

2.
Zhe Li 《Polymer》2009,50(3):825-2204
Asymmetric hollow particles were fabricated from the self-assembly of block copolymers poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP) and poly(ethylene glycol)-block-poly(acrylic acid) (PEG-b-PAA) in water. The shell of the asymmetric hollow particle was a polyion complex layer which acted as a semipermeable membrane. Outside the shell were PEG hydrophilic layers and inside were thermo-sensitive PNIPAM chains. When temperature was higher than the lower critical solution temperature (LCST) of PNIPAM, it became insoluble and collapsed onto the shrinking shell to form a hydrophobic lumen. The whole process was characterized by dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), atom force microscopy (AFM) and nuclear magnetic resonance (NMR).  相似文献   

3.
A new block terpolymer of poly(tetramethylene terephthalate)-block-poly(oxytetramethylene)-block-polydodecanelactam with potential application as elastomers have been obtained by melt polycondensation of α,ω-dihydroxypoly(butylene terephthalate), α,ω-dihydroxypoly(oxytetramethylene) (Mn ≈ 1000) and α,ω-dicarboxyoligo(dodecanelactam) (Mn ≈ 2000). The synthesis and some physical and chemical properties of this block poly(ester-ether-amide) thermoplastic elastomer is presented. A variety of different methods was used to study the phase structure, thermal and relaxational properties.  相似文献   

4.
A series of amphiphilic triblock copolymers poly(ethylene glycol)-block-poly(acrylic acid)-block-poly(n-butyl acrylate) (PEG-b-PAA-b-PnBA) differing only in the relative block lengths were synthesized by the acid-catalyzed elimination of the tert-butyl groups from poly(ethylene glycol)-block-poly(tert-butyl acrylate)-block-poly(n-butyl acrylate) (PEG-b-PtBA-b-PnBA), which was synthesized by atom-transfer radical polymerization (ATRP). The degree of polymerization, molecular weight and percentage of hydrolysis of the product PEG-b-PAA-b-PnBA were studied by gel permeation chromatography (GPC), NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to study the aggregation states of copolymers in water solution. The radii of the copolymer micelles shrink as Ca2+ is introduced into the solutions. The crystallization behaviors of calcium carbonate controlled by copolymer 1 (PEG112-b-PAA86-b-PnBA60) and copolymer 2 (PEG112-b-PAA40-b-PnBA72) differing mainly in the length of PAA block were systematically studied. It was found that the crystallization products are composed of calcite and vaterite, and the ratio of vaterite to calcite increases with increasing the concentration of copolymer 1. For copolymer 2, however, only calcite is obtained at all the concentration range investigated in this work.  相似文献   

5.
Ke Zhang 《Polymer》2010,51(13):2809-18
A functional gelable triblock copolymer, poly(2-vinylpyridine)-block-poly(3-(triethoxysilyl)propyl methacrylate)-block-polystyrene (P2VP-b-PTEPM-b-PS), was prepared by the combination of reversible addition-fragmentation chain transfer (RAFT) mediated radical polymerization and copper catalyzed click chemistry. Bulk microphase separation of P2VP310-b-PTEPM58-b-PS322 under different conditions was studied in order to prepare organic/inorganic nanoobjects by a procedure of crosslinking PTEPM phases and dispersing in a solvent. The conditions included using different annealing solvents and adding stearic acids to form supramolecular complexes with P2VP blocks respectively. Then the packed cylinders with P2VP cores and PTEPM shells dispersed in the PS matrix, lamella with alternating PS, PTEPM and P2VP layers, and the inverse cylindrical morphology with PS cores and PTEPM shells dispersed in the matrix of P2VP/stearic acid complex were obtained respectively just from the same triblock copolymer sample. After crosslinking PTEPM microdomains by sol-gel process and dispersing in solvents, a series of organic/inorganic polymeric nanoobjects, including two types of nanofibers with inverse internal structure and one novel kind of nanoplates, were produced. Further modification of the fibers with P2VP cores has been studied.  相似文献   

6.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications.  相似文献   

7.
A series of ABA type triblock copolymers [Poly(lactide)-block-poly(hexamethylene 2,3-O-isopropylidene tartarate)-block-poly(lactide)] PLA-b-PHIT-b-PLA based on renewable monomers l-tartaric acid and l-lactide have been synthesized and the effect of the PLA chain length on the properties of the triblock copolymers has been systematically investigated. The block nature of the copolymers was established by differential scanning calorimetry (DSC) which showed two glass transition temperatures (Tg) corresponding to PHIT and PLA blocks. Solution cast films of these triblock copolymers turned out to be brittle in nature and to overcome this, ε-caprolactone was copolymerized with l-lactide to generate a separate series of triblock copolymers [PLA-ran-PCL]-b-PHIT-b-[PLA-ran-PCL]. Our study systematically demonstrates that the PLA-to-PCL ratio in the outer block composition influences the mechanical properties via a delayed post-yield stress drop phenomenon. The study further elaborates the time-synchronized strain-field analysis of the novel triblocks to be a convincing approach for the characterization of micro-deformation modes.  相似文献   

8.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

9.
S.J. Bai 《Polymer》1985,26(7):1053-1057
Crosslink distribution of epoxy networks of diglycidyl ether of bisphenol A (DGEBA) cured with stoichiometric amounts of meta-phenylene diamine (mPDA) was examined by small-angle neutron scattering (SANS). A monodisperse DGEBA resin with the smallest molecular weight was used to enhance the crosslink density and to simplify the network structure for deuterium-labelling. Meta-phenylene-d4 diamine (mPDAd4) was applied to label definitively the crosslinks. SANS measurements covered a reciprocal space range from 0.016 to 0.220 Å?1 or, equivalently, real-space distances from 400 to 30 Å. Application of SANS on the deuterium-labelled epoxy networks consistently produces a constant excess intensity over the unlabelled epoxy networks. Since the scattering intensity from total correlation of the network was negligible, as evident from measurements of SANS on the unlabelled epoxy networks and small-angle X-ray scattering on the epoxy networks, the constant excess SANS intensity can only be attributed to a uniform spatial distribution of the amine curing agent. In other words, the crosslinks are distributed uniformly throughout the epoxy network.  相似文献   

10.
1H spin-diffusion solid-state NMR, in combination with other techniques, was utilized to investigate the effect of molecular architecture and temperature on the interphase thickness and domain size in poly(styrene)-block-poly(butadiene) and poly(styrene)-block-poly(butadiene)-block-poly(styrene) copolymers (SB and SBS) over the temperature range from 25 to 80 °C. These two block copolymers contain equal PS weight fraction of 32 wt%, and especially, polystyrene (PS) and polybutadiene (PB) blocks are in glass and melt state, respectively, within the experimental temperature range. It was found that the domain sizes of the dispersed phase and interphase thicknesses in these two block copolymers increased with increasing temperature. Surprisingly we found that the interphase thicknesses in these two block copolymers were obviously different, which was inconsistent with the theoretical predictions about the evolution of interphase in block copolymer melts by self-consistent mean-field theory (SCFT). This implies that the interphase thickness not only depends strongly on the binary thermodynamic interaction (χ) between the PS and PB blocks, but also is influenced by their molecular architectures in the experimental temperature range.  相似文献   

11.
Andreas Walther 《Polymer》2008,49(15):3217-3227
The controlled crosslinking of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) (SBT) block terpolymers in their microphase-segregated bulk state is investigated. Two different methods, cold vulcanization and free radical crosslinking as well as its optimized procedure, the thiol-polyene method, are applied for crosslinking the lamellar polybutadiene microdomains within the lamella-lamella (ll) morphology of SBT bulk structures. It was found that the microphase-separated structures of the block terpolymers react very sensitively towards the addition of swelling solvents and crosslinking agents. The changes in the microphase-segregated morphologies are followed at all stages with transmission electron microscopy to give an in-depth view of the nanoscopic transformations. These partially unexpected changes in the morphologies make a careful adjustment and optimization of the reaction conditions necessary. For cold vulcanization, i.e. the reaction of double bonds with sulphur monochloride, several swelling solvents and concentrations of crosslinking agents are explored. In the case of free radical crosslinking, it is found that an increase of the radical initiator concentration above 5 wt% does not lead to an increase of insoluble material as radical chain cleavages occur as side reactions, thus limiting the amount of the desired gel fraction. However, the addition of a trifunctional thiol can further increase the desired network formation. By means of this procedure and a subsequent homogenization, it is possible to create novel disc-like Janus particles. Dynamic light scattering and scanning force microscopy are used to highlight the flat nanoparticle structure and to demonstrate the influence of the crosslinker on the formed structures.  相似文献   

12.
The preparation of nanoporous carbon materials and their characterization combining small-angle neutron scattering (SANS) with gas physisorption is presented. Carbon with a porous structure and tunable form is obtained here by a salt-templating approach using poly(ionic liquid) as precursor. SANS in combination with contrast matching by deuterated p-xylene was used for a separation of the scattering component deriving from the density fluctuations of the carbon matrix and the inaccessible porosity. The resulting scattering curves could be used for an unambiguous characterization of the pore structure of the materials. SANS curves measured at different partial pressure of the matching agent p-xylene were used for a differential filling of the micro- and mesopores. The analysis using the chord length distribution (CLD) was employed to determine the specific surface area and the pore size at different adsorption steps. The SANS results were in good agreement with the quenched solid density functional theory (QSDFT) analysis of the nitrogen physisorption. By the comparison of both characterization methods the pore shape could be determined. The combination of both SANS and gas physisorption is thus shown to provide a comprehensive characterization of the pore structure of the carbon monoliths throughout the entire pertinent length scale.  相似文献   

13.
Bi-phase dispersible ZnO-Au hybrid nanoparticles were synthesized via one-pot non-aqueous nanoemulsion using the triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) as the surfactant. The characterization shows that the polymer-laced ZnO-Au nanoparticles are monosized and of high crystallinity and demonstrate excellent dispersibility and optical performance in both organic and aqueous medium, revealing the effects of quantum confinement and medium. The findings show two well-behaved absorption bands locating at approximately 360 nm from ZnO and between 520 and 550 nm from the surface plasmon resonance of the nanosized Au and multiple visible fingerprint photoluminescent emissions. Consequently, the wide optical absorbance and fluorescent activity in different solvents could be promising for biosensing, photocatalysis, photodegradation, and optoelectronic devices.  相似文献   

14.
Ning Kang  Jean-Christophe Leroux   《Polymer》2004,45(26):8967-8980
Novel A-B-A triblock and star-block amphiphilic copolymers, i.e. poly(N-(2-hydroxypropyl)methacrylamide)-block-poly(D,L-lactide)-block-poly(N-(2-hydroxypropyl)metha-crylamide), poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide)-block-poly(N-vinyl-2-pyrrolidone), star-poly(D,L-lactide)-block-poly(N-(2-hydroxypropyl)methacrylamide) and star-poly(D,L-lactide)-block-poly(N-vinylpyrrolidone), were synthesized and characterized. These polymers were prepared by free radical polymerization of N-(2-hydroxypropyl)methacrylamide and N-vinyl-2-pyrrolidone in the presence of either poly(D,L-lactide) dithiol or star-poly(D,L-lactide) tetrakis-thiol, both biodegradable macromolecular chain-transferring agents. All copolymers self-assembled in aqueous solution to form supramolecular aggregates of 20–180 nm in size. The critical aggregation concentration of the copolymers ranged from 5 to 24 mg/L, depending on their hydrophobicity. The partition equilibrium constant of pyrene in the hydrophobic core of micelles was between 0.71×105 and 1.63×105. The triblock copolymer micelles were loaded with two model poorly water-soluble drugs, namely, indomethacin (1.5–16.4% w/w) and paclitaxel (0.4–1.5% w/w), by a dialysis procedure. These triblock and star-block copolymers could prove useful as nanocarriers for the solubilization and delivery of hydrophobic drugs.  相似文献   

15.
《Polymer》2014,55(26):6967-6972
Pressure dependence of various phase transitions for the miscible block copolymer (BCP) blends was evaluated by depolarized light scattering (DPLS) and small-angle neutron scattering (SANS) measurements, in which the blends consist of a polystyrene-b-poly(n-butyl methacrylate) (PS-b-PnBMA) and a deuterated polystyrene-b-poly(n-hexyl methacrylate) (dPS-b-PnHMA). Excellent baroplasticity was observed in nearly symmetric blends of PS-b-PnBMA/dPS-b-PnHMA, leading to the most outstanding pressure coefficients, |dT/dP|, in a closed-loop type phase behavior between a lower disorder-to-order transition (LDOT) and an order-to-disorder transition (ODT) type phase behavior. Together with the estimated pressure coefficients based on the values of enthalpic and volumetric changes at phase transitions, we demonstrate that the entropic compressibility for the miscible BCP blends is a baroplastic indicator, which was characterized by the negative volume change on mixing (ΔVmix) at transitions.  相似文献   

16.
In this study, amphiphilic block co-polypeptide consisting of hydrophilic poly(N-hydroxyethyl l-glutamine) (PHEG) and hydrophobic poly(l-tryptophan) (poly(Trp)), PHEG-block-poly(Trp)-T, was prepared by aminolysis of poly(γ-benzyl l-glutamate)-block-poly(Trp) with 2-amino-1-ethanol and subsequent treatment with trifluoroacetic acid (TFA). By using the block co-polypeptide, aggregate formation and sustained-release behaviour of model substances were investigated. The block co-polypeptide formed aggregates in aqueous medium and showed the ability to uptake hydrophobic substances into their hydrophobic moiety. The block co-polypeptide exhibited pH-response, the critical aggregate concentration of PHEG-block-poly(Trp)-T and the sizes of the aggregates depended on pH and decreased at pH 2.0. Moreover, fluorescence studies indicated a loose aggregate structure at pH 2.0 and the release rate of the model substances from the polypeptide aggregates was higher at pH 2.0 than at pH 5.0. These results could be explained by dissociation of Trp residues in the hydrophobic cores of the aggregates.  相似文献   

17.
Xingping Qiu 《Polymer》2004,45(21):7203-7211
Reported in this paper is the preparation of fluorescent nanospheres from poly(solketal acrylate)-block-poly(2-hydroxyethyl acrylate) or PSA-PHEA. The strategy involved the chemical derivation of the PHEA block to graft the fluorophore fluorosceinamine (Fl) first. A selective solvent for PSA was then used to induce micelle formation from the diblock with PSA as the corona and the fluorescein-tagged PHEA block as the core. Nanospheres with fluorescent cores were obtained after PHEA core crosslinking with succinyl chloride. Water-dispersible nanospheres were prepared after removing the acetonide groups from the PSA block by hydrolysis to yield poly(glyceryl acrylate). Such nanospheres may find applications in fluorescent in situ hybridization assays.  相似文献   

18.
Di Hu 《Polymer》2010,51(25):6047-5707
In this work, we investigated the self-assembly behavior of poly(?-caprolactone)-block-poly(ethylene-co-ethylethylene)-block-poly(?-caprolactone) (PCL-b-PEEE-b-PCL) triblock copolymer in epoxy thermosets. The PCL-b-PEEE-b-PCL triblock copolymer was synthesized via the ring-opening polymerization of ?-caprolactone with a hydroxyl-terminated poly(ethylene-co-ethylethylene) as the macromolecular initiator. The hydroxyl-terminated poly(ethylene-co-ethylethylene) was prepared with the hydrogenation reaction of a hydroxyl-terminated polybutadiene. The triblock copolymer was incorporated into the precursors of epoxy to obtain the nanostructured thermosets. It was found that the self-organized nanophases were formed in the mixture before curing reaction and the nanostructures can be further fixed via curing reaction. The self-assembly behavior of the triblock copolymer in epoxy thermosets was investigated by means of atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and dynamic mechanical thermal analysis (DMTA). Differential scanning calorimetry (DSC) shows that the formation of the self-organized nanophase in the thermosets caused that a part of poly(?-caprolactone) subchains were demixed from epoxy matrix with the occurrence of curing reaction; the fractions of demixed PCL blocks were estimated according to the Tg-composition relation of the model binary blends of epoxy and PCL.  相似文献   

19.
Xingtian Yang  Zhirong Xin 《Polymer》2009,50(16):4089-5707
Poly(?-caprolactone)-block-poly(butadiene-co-acrylonitrile)-block-poly(?-caprolactone) triblock copolymer was synthesized via the ring-opening polymerization of ?-caprolactone with dihydroxyl-terminated butadiene-co-acrylonitrile random copolymer. The amphiphilic block copolymer was used to toughen epoxy thermosets via the formation of nanostructures. The morphology of the thermosets was investigated by means of atomic force microscopy, transmission electronic microscopy and small-angle X-ray scattering. It was judged that the formation of the nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The thermal and mechanical properties of the nanostructured thermosets were compared to those of the ternary blends composed of epoxy, poly(butadiene-co-acrylonitrile) and poly(?-caprolactone) with the identical content of the modifiers. It is noted that at the same composition the nanostructured thermosets displayed higher glass transition temperatures (Tgs) than the ternary blends, which was evidenced by dynamic mechanical analysis. The fracture toughness of the thermosets was evaluated in terms of the measurement of critical stress field intensity factor (K1C). It is noted that at the identical composition the nanostructured blends significantly displayed higher fracture toughness than the ternary blends. In addition, the K1C of the nanostructured thermosets attained the maximum with the content of the modifier less than their counterpart of ternary blending.  相似文献   

20.
We report experimental results of pressure-induced ordering of spheres on body-centered cubic (bcc) superlattice in a microphase-separated polystyrene-block-poly(ethylene-co-but-1-ene)-block-polystyrene (SEBS) triblock copolymer. After well-ordered bcc superlattice was prepared by annealing as-cast samples at 140 °C for 10 h, the samples were further pressurized at 50.7, 101.3, 202.7 and 405.3 MPa at room temperature for 24 h. Small-angle X-ray scattering (SAXS) measurements revealed further ordering of the bcc spheres for the samples pressurized at 202.7 and 405.3 MPa, while the bcc regularity became worse for the samples pressurized at 50.7 and 101.3 MPa. On the other hand, starting with an ill-ordered sample, no change in the SAXS profile was detected upon pressurizing at 405.3 MPa up to 27.5 h. Thus, it turned out that the effect of pressure on the ordering of spherical microdomains is not straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号