首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanical performance of immiscible blends of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) and poly(styrene-co-acrylonitrile) (SAN) and the subsequent influence of compatibilisation by tailored polystyrene-block-polybutadiene-block-poly(methyl methacrylate) triblock terpolymers (SBM) on the mechanical performance under static and dynamic loads is analysed in detail. A PPE/SAN 60/40 blend was selected as a base system for the compatibilisation experiments. The observed static tensile behaviour is described by micromechanical models and correlated to the blend microstructures as observed by transmission electron microscopy. In most cases, the addition of the SBM triblock terpolymers further enhances the ductility of the blend while only leading to a minor reduction of modulus and strength. Triblock terpolymers with symmetric end blocks, mainly located at the interface between PPE and SAN, led to nearly isotropic specimens. In contrast, SBM materials with a longer polystyrene block predominantly formed micelles in the PPE phase and the blends revealed a highly anisotropic morphology. Comparative investigations of the fatigue crack growth behaviour parallel to the direction of injection also reflected this variation in mechanical anisotropy of the compatibilised blends. A poor toughness and a predominant interfacial failure were observed in the case of the SBM with a long polystyrene block. In contrast, a considerable improvement in properties as a result of pronounced plastic deformations was observed for blends compatibilised by triblock terpolymers with symmetric end blocks. The systematic correlation between morphology and mechanical performance of compatibilised PPE/SAN blends established in this study provides an efficient way for the desired selection of suitable and effective compatibilising agents, ensuring both a superior multiaxial toughness as well as a high strength and modulus of the overall system.  相似文献   

2.
Polymer blend of poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE) and poly(styrene‐co‐acrylonitrile) (SAN), which has broad commercial interest, has limited miscibility. A triblock terpolymer, polystyrene‐block‐polybutadiene‐block‐poly(methyl methacrylate) (SBM), is often used as compatibilizer to improve the miscibility of PPE/SAN. In this work, dissipative particle dynamics and molecular dynamics of Material Studio were used to study the essentials that influence miscibility of the blend systems, and then Flory–Huggins parameter χ, radial distribution function (RDF) and morphologies are analyzed. It shows that the blends with more content of styrene in SAN (above 90 wt%), whose mass percentage is 60%, are best miscible. For the systems of PPE/SAN added with SBM, the miscibility increases and then decreases with the increase of SBM content. A longer chain of styrene (S) in SBM leads to wrapped structure of PMMA by PB, wrapped by PS, resulting in decrease of the miscibility. From studies and simulation of χ and RDF, the best blend system for commercial and industrial use is the one with mass ratio of PPE/SAN/SBM 36/54/10, in which S content in SAN is above 90 wt%. For SBM, the ratio of chain length styrene (S)/butadiene (B) is lessthan 1, while B and M are the same in chain length. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

3.
Polystyrene-b-polybutadiene-b-poly(methyl methacrylate) triblock terpolymers (SBM) with equal (symmetric) and different (asymmetric) block lengths were used to compatibilize polymer blends based on poly(2,6-dimethyl-1,4-phenylene ether) (PPE) and poly(styrene-co-acrylonitrile) (SAN). First, the rheological behavior of the individual components and their binary mixtures was investigated. Based on the results, samples of PPE, SAN and SBM in weight ratios of 32/48/20 were melt blended and the morphology development during melt processing was investigated. It was found that a raspberry morphology, i.e. dispersion of PPE in SAN with rubbery PB domains at the PPE/SAN interface, could be achieved with a symmetric SBM with under sufficiently high shear rate, while a symmetric SBM with did not yield the desired morphology. Asymmetric SBMs with long PS blocks dissolved in the PPE phase did not display the expected compatibilization effect. In order to obtain a raspberry morphology with asymmetric copolymers it is suggested to pre-blend the SBM with SAN before adding the PPE. Finally it is shown that a commercial PPE containing High Impact Polystyrene (HIPS) as a toughness modifier can be compatibilized with SAN by melt processing using a symmetric SBM triblock terpolymer with   相似文献   

4.
A polymer blend system consisting of polystyrene grafted onto poly (p-phenylene ethynylene) (PS-g-PPE) and poly (styrene-block-isoprene-block-styrene) triblock copolymer (SIS) yields highly polarized emission due to the unidirectional alignment of the PPE molecules. During the roll casting, the triblock copolymer microphase separates and creates unidirectionally aligned PS cylindrical microdomains in the rubbery PI matrix. PPE, a fluorescent conjugated polymer, was grafted with polystyrene (PS) side chains that enabled sequestration and alignment of these rigid backbone emitter molecules into the PS microdomains of the SIS triblock copolymer. Deforming the thermoplastic elastomer in a direction perpendicular to the orientation direction of the cylinders causes rotation of the PS cylinders and the PPE emitter molecules and affords tunable polarized emission due to re-orientation of the PPE containing PS cylinders as well as film thinning from Poisson effect.  相似文献   

5.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

6.
Joachim Schmelz  Holger Schmalz 《Polymer》2012,53(20):4333-4337
We present a straightforward approach to well-defined 1D patchy particles utilizing crystallization-induced self-assembly. A polystyrene-block-polyethylene-block-poly(methyl methacrylate) (PS-b-PE-b-PMMA) triblock terpolymer is cocrystallized in a random fashion with a corresponding polystyrene-block-polyethylene-block-polystyrene (PS-b-PE-b-PS) triblock copolymer to yield worm-like crystalline-core micelles (wCCMs). Here, the corona composition (PMMA/PS fraction) can be easily adjusted via the amount of PS-b-PE-b-PMMA triblock terpolymer in the mixture and opens an easy access to wCCMs with tailor-made corona structures. Depending on the PMMA fraction, wCCMs with a mixed corona, spherical PMMA patches embedded in a continuous PS corona, as well as alternating PS and PMMA patches of almost equal size can be realized. Micelles prepared by cocrystallization show the same corona structure as those prepared from neat triblock terpolymers at identical corona composition. Thus, within a certain regime of desired corona compositions the laborious synthesis of new triblock terpolymers for every composition can be circumvented.  相似文献   

7.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Mechanical properties and morphological studies of compatibilised blends of PA6/EVA-g-MA and PA6/EVA/EVA-g-MA were studied as functions of maleic anhydride content (MA) and dispersed phase (EVA-g-MA) concentrations, respectively at blending composition of 20 wt% dispersed phase (EVA-g-MA or combination of EVA and EVA-g-MA). The maleic anhydride (MA) was varied from 1 to 6 wt% in the PA6/EVA-g-MA blend, whereas MA concentration was fixed at 2 wt% in the ternary compositions with varying level of EVA-g-MA. ATR-IR spectroscopy revealed the formation of in situ copolymer during reactive compatibilisation of PA6 and EVA-g-MA. It was found that notched Izod impact strength of PA6/EVA-g-MA blends increased significantly with MA content in EVA-g-MA. The brittle to tough transition temperature of reactively compatibilised blends was found to be at 23 °C. The impact fractured surface topology reveals extensive deformation in presence of EVA-g-MA whereas; uncompatibilised PA6/EVA blend shows dislodging of EVA domains from the matrix. Tensile strength of the PA6/EVA-g-MA blends increased significantly as compared to PA6/EVA blends. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase and the matrix. It is observed from the phase morphological analysis that the average domain size of the PA6/EVA-g-MA blends is found to decrease gradually with increase in MA content of EVA-g-MA. A similar decrease is also found to observe in PA6/EVA/EVA-g-MA blends with increase in EVA-g-MA content, which suggest the coalescence process is slower in presence of EVA-g-MA. An attempt has been made to correlate between impact strength and morphological parameters with regard to the compatibilised system over the uncompatibilised system.  相似文献   

9.
Compatibility of polystyrene (PS) and acrylonitrile-butadiene rubber (NBR) blend is poor, hence technological compatibilisation was sought by the addition of styrene-acrylonitrile copolymer (SAN). The interfacial activity of SAN was studied as a function of compatibiliser concentration by following the morphology of three different blend series, viz. PS/NBR 30/70, 50/50 and 70/30. Incorporation of SAN into PS/NBR blends improved tensile, tear, hardness and impact properties. Addition of SAN beyond the saturation level (critical micelle concentration) adversely affected the ultimate properties. Attempts were made to understand the conformation of the compatibiliser at the interface. The protocol of mixing was varied, and, its effect on the mechanical properties was investigated. The experimental results were compared with the theoretical predictions of Noolandi and Hong.  相似文献   

10.
The toughness behavior of PPO–SAN blends with the modifier poly(styrene‐block‐butadiene) (SBSB) and with poly(styrene‐block‐butadiene‐block‐methyl methacrylate) copolymers (SBM) under impact loading conditions has been investigated. The observed morphology of blends compatibilized with SBM, in which the rubber phase discontinuously accumulated at the PPO–SAN interface, correlated with about 20 times higher energy dissipation up to maximum force and about seven times higher deformation capacity compared to pure PPO–SAN blends. In contrast, the fracture behavior of the SBSB‐modified blends was not as strongly dependent on the rubber content. It is especially noteworthy that although the SBM modification resulted in a strong increase in toughness of the PPO–SAN blends, no decrease in stiffness could be found with up to 15% rubber additions. The values of Young's moduli remained at the same high level of the nonmodified material. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2037–2045, 2000  相似文献   

11.
We observed that modified polyphenylene ether (PPE) was solubilized in thermoplastic styrenic elastomer (TPS) and that a two‐phase lacy structure formed on nanometer scales when the TPS composition was 67 wt % and modified PPE and polystyrene‐block‐poly(styrene‐co‐ethylene‐co‐butylene)‐block‐polystyrene (S‐SEB‐S triblock copolymer) were blended. However, the molecular weight of the outer PS block segments MoutPS and the content of the outer PS block segments ?outPS were <10,000 g/mol and 20 wt %, respectively. The resulting S‐SEB‐S/modified PPE nano‐alloy exhibited both flexibility and flame retardancy, unlike other materials, where a trade‐off exists between these two properties; that is, the flame retardancy was excellent when the phosphorus additive was present. This combination of properties might be attributed to the two‐phase nanometer‐scale structure consisting of flame‐retardant styrene/PPE domains and a continuous soft, lacy SEB matrix. The results for polystyrene‐block‐poly(ethylene‐co‐butylene)‐block‐polystyrene (S‐EB‐S triblock copolymer)/modified PPE blends were presented for comparison. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40446.  相似文献   

12.
Immiscible blends of poly(2,6‐dimethyl‐1,4‐phenylene ether)/poly(styrene‐co‐acrylonitrile) (PPE/SAN) were batch‐foamed using CO2 as a blowing agent as a function of foaming temperature, foaming time, and blend composition. Evaluation of the resulting cellular morphology revealed an enhanced foamability of SAN with PPE contents up to 20 wt% as indicated by a similar volume expansion but a significantly reduced mean cell size. This behavior is related to a heterogeneous nucleation activity by the dispersed PPE phase. A further increasing PPE content, however, leads to increasing foam densities as well as nonuniform foam morphologies. The changes in the foaming behavior can be correlated with the melt rheological properties and the corresponding blend morphology. Shear‐rheological investigations revealed an onset of percolation of the dispersed PPE phase between 20 and 40 wt%, and a transition towards cocontinuity at 60 wt%. The materials response under uniaxial elongational flow, as assessed by Rheotens measurements, revealed an increase in elongational viscosity scaling with the PPE content, similar to the shear data. However, the strain hardening behavior was reduced by increasing PPE contents and, at 20 wt%, the drawability revealed a significant drop‐both phenomena limiting the foamability of polymers. In summary, the present study discusses fundamental aspects of foaming immiscible PPE/SAN blends. POLYM. ENG. SCI., 48:2111–2125, 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
This work deals with a new route to modify polymer blend morphology in order to improve the porosity of gas diffusion layers (GDLs) for proton exchange membrane fuel cells (PEMFCs). First, electrically conductive polymer‐based blends were carefully formulated using a twin‐screw extrusion process. Blend electrical conductivity was ensured by the addition of high specific surface area carbon black and synthetic graphite flakes. Final GDL porosity, in particular its macroporosity, was generated by melt blending polyamide 11 (PA11) matrix with polystyrene (PS) followed by PS extraction with tetrahydrofuran (THF) solvent at room temperature. In order to improve GDL porosity by the optimisation of PS dispersion in the PA11 matrix, PA11/PS blends were compatibilised by the addition of 2 wt.‐% of clay. It was observed that both macroporosity and pore size distribution were beneficially modified after blend compatibilisation. Final GDL conductivity of about 1.25 S cm–1, a porosity of 53% and a specific pore surface area of 75 m2 g–1 were achieved.  相似文献   

14.
Summary The impact properties of 1:1 polyolefin-polystyrene blends compatibilised with a series of hydrogenated styrene-butadiene block copolymers of various structures have been studied with a view to establishing a structure-property realationship. The most effective compatibiliser in this context appears to be a low molecular weight triblock (Kraton G1652). Addition of only 5% Kraton G1652 affords a ca. three-fold improvement in the impact strength for a 1:1 PP/PS blend over the uncompatibilised blend and leads to near HIPS impact strength for a 1:1 LDPE/PS blend. This compatibiliser is as effective as a high molecular weight tapered diblock and appears to be substantially more effective than either low molecular weight diblocks or a higher molecular weight triblock.  相似文献   

15.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

16.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
In this work, morphological, electrical, and dielectric performance of nylon copolymer (PA6, 66)/ethylene propylene diene rubber (EPDM) blends were systematically studied with reference to blend ratio and compatibilisation. As the concentration of PA6, 66 and the percentage of compatibiliser in the blend increases the resistivity values decreases. The existence of two phases, PA6, 66 and EPDM with different conductivity and interfacial polarization are responsible for the increase in the dielectric properties of the blends. Compatibilisation of the blends improved the dielectric constant of the blend system. Addition of 2.5% of compatibiliser gave the highest value of dielectric constant. At a high concentration of EPM‐g‐MA, the polarity of the compatibilised blends was found to be increased, which resulted in the substantial increase in the value of loss and dissipation factor. The dielectric values of the blends were correlated with blend phase morphology. Finally the experimental data was compared with various theoretical predications. POLYM. ENG. SCI., 59:2195–2201, 2019. © 2019 Society of Plastics Engineers  相似文献   

18.
The miscibility and properties of the alloys composed of polyphenylene ether (PPE), polystyrene (PS), and acrylonitrile-styrene (SAN) polymers have been studied. The heat distortion temperature and flexual strength decreased with increasing AN contents in SAN in PPE/SAN alloys because the mutual solubility was poor in the high-AN content region. However, PPE/PS/SAN alloys showed higher heat distortion temperature and higher flexural strength than the PPE/PS miscible alloy and the PPE/SAN immiscible alloy. Furthermore, the PPE/PS/SAN alloy has excellent fluidity. It is a kind of immiscible alloy without a compatibilizer, which shows the excellent properties. The results suggested that there is a so-called “entanglement phase” between two separated phases and PPE distributed to both phases, and this phase is superior to that in which compatibilizer was added to enhance miscibility. Moreover, it is very useful for recycling materials because it does not contain a sophisticated compatibilizer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2515–2520, 1998  相似文献   

19.
Y. KimJ.E. Yoo  C.K. Kim 《Polymer》2003,44(18):5439-5447
The phase behavior of dimethyl polycarbonate-tetramethyl polycarbonate (DMPC-TMPC) blends with poly(styrene-co-acrylonitrile) copolymers (SAN) and the interaction energies of binary pairs involved in blend has been explored. DMPC-TMPC copolycarbonates containing 60 wt% TMPC or more were formed miscible blends with SAN containing limited amounts of AN. The miscibility of copolycarbonate with SAN decreases as the DMPC content increases. The miscible blends showed the LCST-type phase behavior or did not phase separate until thermal degradation. The binary interaction energies involved in the miscible blends were calculated from the phase boundaries using the lattice-fluid theory combined with binary interaction model. The phenyl ring substitution with methyl groups did not lead to interactions that are favorable for miscibility with polyacrylonitrile (PAN). The interaction energies of the polycarbonates blends with SAN copolymers as a function of AN content were obtained. It was revealed that the incline of the number of methyl groups on the phenyl rings of bisphenol-A unit acts favorably for the miscibility with SAN copolymer when SAN contains less than about 30 wt% AN and shifts the most favorable interaction to the low AN content.  相似文献   

20.
Core–shell polybutadiene-graft-polystyrene (PB-g-PS) graft copolymers with different ratios of PB to PS are synthesized by emulsion polymerization. Further, the PB-g-PS copolymers are blended with polypheylene ether (PPE) and PS to prepare PPE/PS/PB-g-PS blends. The effects of PB-g-PS copolymer structure and matrix composition on the morphological, mechanical properties, and deformation mechanism of the blends are studied. The results show that the synthesized submicrometer-sized PB-g-PS copolymer has an excellent toughening efficiency, both the copolymer and PS are introduced into PPE resin to produce a ternary blend which is combined with high toughness and processing properties. The optimum toughening effect on PPE/PS matrix is observed at the core–shell weight ratio of 70/30 in PB-g-PS copolymer, and the impact strength of the blends increased from 101 to 550 J m−1. In addition, the dispersion pattern of rubber particles in the matrix gradually changes from uniform dispersion to aggregation as the core–shell ratio of PB-g-PS copolymers increases. On the other hand, with the increase of PPE content, the dispersion of rubber particles in PPE/PS matrix is improved, and the deformation mechanism is changed from cracking to a combination of crazing and shear yielding, which can lead to absorb more energy to achieve better toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号