首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaoyi Sun  Xiaohua Huang  Qi-Feng Zhou 《Polymer》2005,46(14):5251-5257
The synthesis of ABC triblock copolymer poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene (PEO-b-PMMA-b-PS) via atom transfer radical polymerization (ATRP) is reported. First, a PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of halo-terminated poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) diblock copolymers under ATRP conditions. Then PEO-b-PMMA-b-PS triblock copolymer was synthesized by ATRP of styrene using PEO-b-PMMA as a macroinitiator. The structures and molecular characteristics of the PEO-b-PMMA-b-PS triblock copolymers were studied by FT-IR, GPC and 1H NMR.  相似文献   

2.
We report the synthesis of a well-defined linear tetrablock quaterpolymer of poly(butyl acrylate)-b-polystyrene-b-poly(methyl acrylate)-b-poly(methyl methacrylate) by combining atom transfer radical polymerization (ATRP) and a click coupling approach. For this purpose, polystyrene-b-poly(butyl acrylate) (AB) was prepared by ATRP using macroinitiator as α-trimethylsilyl(TMS)-alkyne ω-bromo polystyrene. The α-(TMS) end of the AB diblock copolymer was deprotected using tetrabutylammonium fluoride (TBAF) in THF. The ω-azide end of the CD diblock copolymer was made from poly(methyl methacrylate)-b-poly(methyl acrylate) (CD) via transformation of the bromine chain end by a simple nucleophilic substitution reaction with NaN3 in DMF. Click coupling between the ω-azide end in CD diblock copolymer with the α-alkyne end in the AB diblock copolymer was then performed by Cu1-catalyzed (3+2) cycloaddition. Gel permeation chromatography (GPC), FT-IR and 1H NMR spectroscopy confirmed the successful formation of a linear ABCD tetrablock copolymer via ATRP and click coupling.  相似文献   

3.
Xifei Yu  Guo Zhang  Tongfei Shi  Lijia An 《Polymer》2007,48(9):2489-2495
A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)2-PEO-(PS-Fluor-PMMA)2, is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by 1H NMR, GPC and fluorescence spectroscopy.  相似文献   

4.
Jingwei Liu  Liang Ding  Dan Yang  Liya Zhang 《Polymer》2009,50(22):5228-4963
A new amphiphilic AB2 star copolymer was synthesized by the combination of ring-opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP). Two different routes (methods A and B) were employed firstly to prepare the poly(oxanorbornene)-based monotelechelic polymers as the hydrophobic arm bearing dibromo-ended group via ROMP in the presence of two different terminating agents catalyzed by first generation Grubbs catalyst. The values of capping efficiency (CE) of the polymers were determined by NMR, which were 94% and 67% for methods A and B, respectively. Then, the dibromo-ended ROMP polymers were used as the macroinitiators for ATRP of 2-(dimethylamino)ethyl methacrylate (DMAEMA) to produce two hydrophilic arms. The prepared amphiphilic AB2 star copolymers poly(7-oxanorborn-5-ene-exo,exo-2,3-dicarboxylic acid dimethyl ester)-block-bis[poly(2-(dimethylamino)ethyl methacrylate)] (PONBDMn-b-(PDMAEMAm)2) with a fixed chain length of hydrophobic PONBDM and various hydrophilic PDMAEMA chain lengths can self-assemble spontaneously in water to form polymeric micelles, which were characterized by dynamic light scattering, atom force microscopy, and transmission electron microscopy measurements.  相似文献   

5.
Copper‐mediated atom transfer radical polymerization (ATRP) is versatile for living polymerizations of a wide range of monomers, but ATRP of vinyl acetate (VAc) remains challenging due to the low homolytic cleavage activity of the carbon‐halide bond of the dormant poly(vinyl acetate) (PVAc) chains and the high reactivity of growing PVAc radicals. Therefore, all the reported highly active copper‐based catalysts are inactive in ATRP of VAc. Herein, we report the first copper‐catalyst mediated ATRP of VAc using CuBr/2,2′:6′,2″‐terpyridine (tPy) or CuCl/tPy as catalysts. The polymerization was a first order reaction with respect to the monomer concentration. The molecular weights of the resulting PVAc linearly increased with the VAc conversion. The living character was further proven by self‐chain extension of PVAc. Using polystyrene (PS) as a macroinitiator, a well‐defined diblock copolymer PS‐b‐PVAc was prepared. Hydrolysis of the PS‐b‐PVAc produced a PS‐b‐poly(vinyl alcohol) amphiphilic diblock copolymer. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

6.
Submicron-sized poly(i-butyl methacrylate)-block-polystyrene particles were successfully prepared by two-step atom transfer radical polymerization (ATRP) in aqueous media: ATRP in miniemulsion (miniemulsion-ATRP) followed by ATRP in seeded emulsion polymerization (seeded-ATRP). When PiBMA particles, which were prepared by the miniemulsion-ATRP process with polyoxyethylene sorbitan monooleate (Tween 80, nonionic emulsifier) of 6-10 wt % based on iBMA, were used as seed in the seeded-ATRP of styrene, the block copolymer particles having narrow molecular weight distribution and pre-determined molecular weight were prepared at high conversion. Some block copolymer particles had an ‘onion-like’ multilayered structure. In this way, controlled/living free radical polymerization can be employed to obtain unique particle morphologies that may not be easily accessible using conventional free radical polymerization.  相似文献   

7.
The chemoenzymatic synthesis of a novel diblock copolymer consisting of a hydrocarbon block of polycaprolactone (PCL) and an epoxy‐based block of poly(glycidyl methacrylate) (PGMA) was achieved by the combination of enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). A trichloromethyl‐terminated PCL macrointiator was obtained via Novozyme 435‐catalyzed eROP of ε‐caprolactone from a bifunctional initiator, 2,2,2‐trichloroethanol, under anhydrous conditions. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate. The kinetics analysis of ATRP indicated a ‘living’/controlled radical polymerization. The macromolecular structure and thermal properties of the PCL macroinitiator and of the diblock copolymer were characterized using NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry. The well‐defined PCL‐b‐PGMA amphiphilic diblock copolymer self‐assembled in aqueous solution into nanoscale micelles. The size and shape of the resulting micelles were investigated using dynamic light scattering, transmission electron microscopy and tapping‐mode atomic force microscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
We report well controlled synthesis of novel tri-component [polyisobutylene (PIB), poly(n-butyl acrylate) (PnBA) and poly(methyl methacrylate) (PMMA)] pentablock copolymers (PMMA-b-PnBA-b-PIB-b-PnBA-b-PMMA) by Atom Transfer Radical Polymerization (ATRP) using PIB as a macroinitiator. The surface properties (hydrophobicity, in vitro oxidative stability and cellular interaction) and the bulk properties (phase separation and mechanical properties) of the PIB-containing pentablock copolymers were compared with PMMA-b-PnBA-b-PDMS-b-PnBA-b-PMMA (where PDMS = polydimethylsiloxane) and conventional PMMA-b-PnBA-b-PMMA copolymers synthesized by PDMS and PnBA macroinitiators respectively. It is revealed that type of ATRP macroinitiator (with low glass transition temperature) influences the properties of resultant pentablock copolymers in terms of phase separation, mechanical properties in vitro oxidative stability, cytocompatibility and cell proliferation. Pentablock copolymers synthesized by PIB macroinitiator exhibited superior overall properties compared to pentablock copolymers synthesized by PDMS macroinitiator and neat triblock copolymer synthesized by PnBA macroinitiator. Among the copolymers tested, one with composition PIB:PnBA:PMMA = 10:64:26 (w/w) exhibited best mechanical property, oxidative stability and cytocompatibility. The newly designed PIB-containing pentablock copolymer may be useful where softness, flexibility, processability and biostability/cytocompatibility are desired.  相似文献   

9.
Dijun Hu 《Polymer》2004,45(19):6525-6532
A series of well-defined ABA triblock copolymers of poly(methyl acrylate)-polystyrene-poly(methyl acrylate) (PMA-b-PS-b-PMA) with different molecular weights were synthesized using Cl-PS-Cl as macroinitiator, CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) as catalyst system via atom transfer radical polymerization (ATRP). Amphiphilic triblock copolymer poly(potassium acrylate)-polystyrene-poly(potassium acrylate) (PKAA-b-PS-b-PKAA) was obtained by hydrolyzing PMA-b-PS-b-PMA. The self-assembly behavior of the triblock copolymers in organic solutions, which is a good solvent for the PS block and in aqueous solutions, which is a good solvent for the PKAA blocks was studied by high performance particle sizer (HPPS). The results showed that the Z-average size of the micelles obviously increases with increase in molecular weight of triblock copolymers, and the micelles in organic solutions are relatively more stable than in aqueous solutions. The effect of the length of PS block on the Z-average size of the micelles is more obvious in organic solution than in aqueous solution. The morphology of triblock copolymers PKAA-b-PS-b-PKAA in aqueous solution, which is a nearly ‘pearl-necklace’-like shape, was examined by transmission electron microscopy (TEM) at room temperature.  相似文献   

10.
A combination of coordination polymerization and atom transfer radical polymerization (ATRP) was applied to a novel synthesis of rod–brush block copolymers. The procedure included the following steps: (1) the monoesterification reaction of ethylene glycol with 2-bromoisobutyryl bromide (BIBB) yielded the bifunctional initiator monobromobutyryloxy ethylene glycol and (2) a trichlorocyclopentadienyl titanium (CpTiCl3; bifunctional initiator) catalyst was prepared from a mixture of CpTiCl3 and bifunctional initiator. The coordination polymerization of n-butyl isocyanate initiated by such a catalyst provided a well-defined macroinitiator, poly(n-butyl isocyanate)–bromine (PBIC–Br). (3) The ATRP method of 2-hydroxyethyl methacrylate initiated by PBIC–Br provided rod [poly(n-butyl isocyanate) (PBIC)]–coil [poly(2-hydroxyethyl methacrylate) (PHEMA)] block copolymers with a CuCl/CuCl2/2,2′-bipyridyl catalyst. (4) The esterfication of PBIC-block-PHEMA with BIBB yielded a block-type macroinitiator, and (5) ATRP of methyl methacrylate with a block-type macroinitiator provided rod–brush block copolymers. We found from the solution properties that such rod–brush block copolymers formed nanostructured macromolecules in solution. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Well‐defined poly(vinyl acetate‐b‐methyl methacrylate) block copolymers were successfully synthesized by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p‐xylene with CuBr as a catalyst, 2,2′‐bipyridine as a ligand, and trichloromethyl‐end‐grouped poly(vinyl acetate) (PVAc–CCl3) as a macroinitiator that was prepared via the telomerization of vinyl acetate with chloroform as a telogen. The block copolymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H‐NMR. The effects of the solvent and temperature on ATRP of MMA were studied. The control over a large range of molecular weights was investigated with a high [MMA]/[PVAc–CCl3] ratio for potential industry applications. In addition, the mechanism of the polymerization was discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1089–1094, 2006  相似文献   

12.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

13.
Comb-shaped graft copolymers with poly(methyl acrylate) as a handle were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening polymerization (ROP) techniques in three steps. First, copolymers of poly(styrene-co-chloromethyl styrene), poly(St-co-CMS), were prepared by RAFT copolymerization of St and CMS using 1-(ethoxycarbonyl)prop-1-yl dithiobenzoate (EPDTB) as RAFT agent. Second, the polymerization of MA using poly(St-co-CMS)-SC(S)Ph as macromolecular chain transfer agent produced block copolymer poly(St-co-CMS)-b-PMA. Third, cationic ring-opening polymerization of THF was performed using poly(St-co-CMS)-b-PMA/AgClO4 as initiating system to produce comb-shaped copolymers. The structures of the poly(St-co-CMS), poly(St-co-CMS)-b-PMA and final comb-shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC).  相似文献   

14.
A new kind of initiator, 3‐(2‐bromo‐2‐methylacryloxy)propyltriethysiliane (MPTS‐Br), was prepared with a simply hydrobrominated commercial silane coupling agent (3‐methacryloxy‐proplytriethysilane, MPTS). It has been one‐step self‐assemble onto the surface of attapulgite (ATP) nanorods in the dispersion system, and by using this initiator‐modified nanorod (MPTS‐Br‐modified ATP nanoparticles, ATP‐MPTS‐Br) as macroinitiator for atom transfer radical polymerization (ATRP). Structurally well‐defined homopolymer polystyrene (PS) and block polymer poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) chains were then grown from the needle‐shaped nanorods surface to yield monodispersed nanorods composed of ATP core and thick‐coated polymer shell (ATP and PS). The graft polymerization parameters exhibited the characteristics of a controlled/”living” polymerization. The PS‐grafted ATP nanorods could be dispersed well in organic solvent with nanoscale. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
BACKGROUND: Atom transfer radical polymerization (ATRP) is considered to be one of the better and easier synthetic tools for the preparation of polymers with controlled molecular weights and polydispersities. Ambient temperature ATRP of tert‐butyl acrylate (tBA) was studied in a detailed manner with ethyl 2‐bromoisobutyrate (EBrB) and tert‐butyl 2‐bromoisobutyrate (tBuBrB) as the initiators for three different degrees of polymerization. RESULTS: Details pertaining to the kinetics of polymerization using different initiators are reported. It is observed that dimethylsulfoxide accelerates the polymerization at room temperature. The use of Cu(II) as the deactivator produces very narrow dispersity polymers. A diblock copolymer, poly(tert‐butyl acrylate)‐block‐poly(methyl methacrylate), was synthesized from the poly(tBA) macroinitiator demonstrating the controlled living nature of the polymerizations. CONCLUSIONS: The rate of polymerization is more rapid with a secondary initiator (ethyl 2‐bromopropionate) compared to the tertiary initiators EBrB and tBuBrB. From the detailed kinetic results it is observed that tris(2‐dimethylaminoethyl)amine was a better ligand compared to tris(2‐aminoethyl)amine in terms of achieving controlled polymerization. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Controlled grafting of well‐defined polymer brushes on the poly(vinylidene fluoride) (PVDF) films was carried out by the surface‐initiated atom transfer radical polymerization (ATRP). Surface‐initiators were immobilized on the PVDF films by surface hydroxylation and esterification of the hydroxyl groups covalently linked to the surface with 2‐bromoisobutyrate bromide. Homopolymer brushes of methyl methacrylate (MMA) and poly(ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the α‐bromoester‐functionalized PVDF surface. The chemical composition of the graft‐functionalized PVDF surfaces was characterized by X‐ray photoelectron spectroscopy (XPS) and attenuated total reflectance (ATR)–FTIR spectroscopy. Kinetics study revealed a linear increase in the graft concentration of PMMA and PEGMA with the reaction time, indicating that the chain growth from the surface was consistent with a “controlled” or “living” process. The “living” chain ends were used as the macroinitiator for the synthesis of diblock copolymer brushes. Water contact angles on PVDF films were reduced by surface grafting of PEGMA and MMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3704–3712, 2006  相似文献   

17.
This article reports on a facile route for the preparation of methyl acrylate and methyl methacrylate graft copolymers via a combination of catalytic olefin copolymerization and atom transfer radical polymerization (ATRP). The chemistry first involved a transforming process from ethylene/allylbenzene copolymers to a polyolefin multifunctional macroinitiator with pendant sulfonyl chloride groups. The key to the success of the graft copolymerization was ascribed to a fast exchange rate between the dormant species and active radical species by optimization of the various experimental parameters. Polyolefin‐g‐poly(methyl methacrylate) and polyolefin‐g‐poly(methyl acrylate) graft copolymers with controlled architecture and various graft lengths were, thus, successfully prepared under dilute ATRP conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
L. Krystin Breland 《Polymer》2006,47(6):1852-1860
A poly(isobutylene-b-styrene) (PIB-PS) copolymer was synthesized via quasi-living carbocationic polymerization from an initiator containing a latent site for atom transfer radical polymerization (ATRP) initiation. The initiator, 3,3,5-trimethyl-5-chlorohexyl acetate (TMCHA), was synthesized in four steps from methyl 3,3-dimethyl-4-pentenoate. The PIB block was created at −70 °C in a methylcyclohexane/methyl chloride (60:40) cosolvent system, using TiCl4 as the catalyst, followed by sequential addition of styrene. The acetate head group of the resulting block copolymer was converted to a hydroxyl group using a strong base and subsequently esterified with 2-bromopropionyl bromide to create an initiating site for ATRP of tert-butyl acrylate, which was carried out using a Cu(I)Br/1,1,4,7,7,-pentamethyl-diethylenetriamine (PMDETA) catalyst system. The final terpolymers had compositions that were very close to theoretical.  相似文献   

19.
Xiaoju Lu  Cheng Li  Shu Yang  Lifen Zhang 《Polymer》2007,48(10):2835-2842
At room temperature atom transfer radical polymerization (ATRP) of N-vinylpyrrolidone (NVP) was carried out using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra-azacyclo-tetradecane (Me6Cyclam) as ligand in 1,4-dioxane/isopropanol mixture. Methyl 2-chloropropionate (MCP) and copper(I) chloride were used as initiator and catalyst, respectively. The polymerization of NVP via ATRP could be mediated by the addition of CuCl2. The resultant poly(N-vinylpyrrolidone) (PNVP) has high conversion of up to 65% in 3 h, a controlled molecular weight close to the theoretical values and narrow molecular weight distribution between 1.2 and 1.3. The living nature of the ATRP for NVP was confirmed by the experiments of PNVP chain extension. With PNVP-Cl as macroinitiator and N-methacryloyl-N′-(α-naphthyl)thiourea (MANTU) as a hydrophobic monomer, novel fluorescent amphiphilic copolymers poly(N-vinylpyrrolidone)-b-poly(N-methacryloyl-N′-(α-naphthyl)thiourea) (PNVP-b-PMANTU) were synthesized by ATRP. PNVP-b-PMANTU copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The results revealed that PNVP-b-PMANTU presented a blocky architecture.  相似文献   

20.
Atom transfer radical polymerization (ATRP) of 1‐(butoxy)ethyl methacrylate (BEMA) was carried out using CuBr/2,2′‐bipyridyl complex as catalyst and 2‐bromo‐2‐methyl‐propionic acid ester as initiator. The number average molecular weight of the obtained polymers increased with monomer conversion, and molecular weight distributions were unimodal throughout the reaction and shifted toward higher molecular weights. Using poly(methyl methacrylate) (PMMA) with a bromine atom at the chain end, which was prepared by ATRP, as the macro‐initiator, a diblock copolymer PMMA‐block‐poly [1‐(butoxy)ethyl methacrylate] (PMMA‐b‐PBEMA) has been synthesized by means of ATRP of BEMA. The amphiphilic diblock copolymer PMMA‐block‐poly(methacrylic acid) can be further obtained very easily by hydrolysis of PMMA‐b‐PBEMA under mild acidic conditions. The molecular weight and the structure of the above‐mentioned polymers were characterized with gel permeation chromatography, infrared spectroscopy and nuclear magnetic resonance. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号