首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a current source inverter (CSI) fed induction motor drive with an optimal power distribution control is proposed for high-power applications. The CSI-fed drive is configured with a six-step CSI along with a pulsewidth modulated voltage source inverter (PWM–VSI) and capacitors. Due to the PWM–VSI and the capacitor, sinusoidal motor currents and voltages with high quality as well as natural commutation of the six-step CSI can be obtained. Since this CSI-fed drive can deliver required output power through both the six-step CSI and PWM–VSI, this article shows that the kVA ratings of both the inverters can be reduced by proper real power distribution. The optimal power distribution under load requirements, based on power flow modelling of the CSI-fed drive, is proposed to not only minimise the PWM–VSI rating but also reduce the six-step CSI rating. The dc-link current control of the six-step CSI is developed to realise the optimal power distribution. Furthermore, a vector controlled drive for high-power induction motors is proposed based on the optimal power distribution. Experimental results verify the high-power CSI-fed drive with the optimal power distribution control.  相似文献   

2.
An integrated current source converter system is presented based on an assembly of a thyristor-based current source inverter (CSI) in parallel with an insulated-gate-bipolar-transistor-based voltage source inverter (VSI) along with passive capacitors for high-power induction motor drive applications. The proposed configuration installs the VSI and the capacitor in such a way that both provide reactive power for generating the leading power factor required to accomplish natural commutations of the CSI. Based on the collaborative operation of the VSI and the parallel capacitor, the proposed system can be designed with a compromise between the VSI power capacity and the capacitor size. In addition, the VSI compensates harmonic current components from the thyristor-based CSI, while the capacitor filters out the voltage spikes during commutation of the thyristors. As a result, sinusoidal motor currents with improved harmonic spectrum can be drawn from this system. The proposed system utilizes the high-power capability of the thyristor-based CSI to supply high real power, while the VSI with easy controllability regulates the induction motor. Theoretical analyses based on mathematical modeling are presented in detail for the relationship between the inverter rating and the capacitor size, design considerations of the capacitor size, and the loss performances.   相似文献   

3.
A novel CSI-fed induction motor drive   总被引:1,自引:0,他引:1  
Current source inverter (CSI) fed drives are employed in high power applications. The conventional CSI drives suffer from drawbacks such as harmonic resonance, unstable operation at low speed ranges, and torque pulsation. This paper presents a novel CSI drive which overcomes all these drawbacks and results in sinusoidal motor voltage and current even with CSI switching at fundamental frequency. The proposed CSI drive uses a three-level inverter as an active filter across motor terminals replacing the bulky ac capacitors used in the conventional drive. A sensorless vector controlled CSI drive based on proposed configuration is developed. The simulation and experimental results are presented. Experimental results show that the proposed drive has stable operation even at low speeds. Comparative results show that the proposed CSI drive has improved torque ripple compared to the conventional configuration.  相似文献   

4.
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.  相似文献   

5.
In this paper, a loss reduction and dc-link current minimization strategy for a high-power current-source inverter (CSI) fed drive is proposed. The proposed strategy consists of an inverter maximum modulation index control scheme and a flux optimization algorithm. Specifically, in the inverter modulation index control, the CSI modulation index is kept at the maximum value while the current-source rectifier (CSR) is used to regulate a reduced variable dc-link current, and therefore, to control the motor current magnitude. This control scheme can effectively reduce the dc-link current, and at the same time, improve the line-side and motor-side waveforms. On the other hand, for the optimized flux control, the relationship between the rotor flux and the dc-link current is first investigated thoroughly. Based on this analysis, the dc-link current from the maximum inverter modulation index control can be minimized further by optimizing the rotor flux according to system variables such as the motor speed, the applied torque, and the motor-side capacitor size. With the proposed dc current minimization strategy, the losses in the semiconductor devices and the dc link can be reduced, and the drive current rating could be lowered. Both simulation and experimental results on a 4.16-kV 600-hp CSI-fed drive system are obtained to verify the effectiveness of the proposed strategy.   相似文献   

6.
In order to reduce the cost and improve the efficiency of medium-voltage induction motor drives, it is desirable that no power transformers be used. The GTO current source inverter (CSI) drive can achieve this requirement. However, the transformerless design of the drive may introduce a high-voltage stress on motor windings, which may deteriorate the motor insulation life. In this paper, the line-to-ground and neutral-to-ground voltages of the motor fed by the GTO CSI are investigated. It is demonstrated that the maximum line-to-ground voltage applied to the motor could be twice as high as the motor-rated phase voltage. Computer simulation and experimental results from a 4000 V, 1250 HP drive are given to verify the theoretical analysis. The effects of DC link choke arrangement on the motor voltage stress are also discussed. This paper provides a valuable design guidance for the insulation of medium-voltage motors used in the GTO CSI drives  相似文献   

7.
An accurate nonlinearity compensation technique for voltage source inverter (VSI) inverters is presented in this paper. Because of the nonlinearity introduced by the dead time, turn-on/off delay, snubber circuit and voltage drop across power devices, the output voltage of VSI inverters is distorted seriously in the low output voltage region. This distortion influences the output torque of IM motors for constant V/f drives. The nonlinearity of the inverter also causes 5th and 7th harmonic distortion in the line current when the distributed energy system operates in the grid-connected mode, i.e., when the distributed energy system is parallel to a large power system through the VSI inverter. Therefore, the exact compensation of this nonlinearity in the VSI inverter over the entire range of output voltage is desirable. In this paper, the nonlinearity of VSI inverter output voltage and the harmonic distortion in the line current are analyzed based on an open-loop system and a L-R load. By minimizing the harmonic component of the current in a d-axis and q-axis synchronous rotating reference frame, the exact compensation factor was obtained. Simulations and experimental results in the low frequency and low output voltage region are presented.  相似文献   

8.
This paper presents a field programmable gate array (FPGA)-based real-time selective harmonic elimination pulse width modulation (SHE-PWM) scheme for voltage source inverter (VSI). The proposed algorithm can generate the switching angles in real time through the approximation of the angles trajectories by simple variable coefficients-based polynomial equations. The proposed algorithm is first presented, analysed, and then its accuracy is checked through angle error analysis. Afterwards, an FPGA-based implementation is used and an induction motor drive is experimentally tested to validate the simulation results. Experimental results showed a good agreement with simulation and proved the validity as well as precision of the proposed algorithm. All intended selected harmonics are eliminated and simultaneously the fundamental is controlled. The output voltage and current present an excellent frequency spectrum with low harmonic distortion and power loss values.  相似文献   

9.
In high frequency motor-drives such as direct torque controlled (DTC) induction motor drives, the motor harmonic loss, and electromagnetic interference are largely affected by the spectrum of the motor input voltage. Nonlinear elements in the control loop of DTC drive make harmonic analysis of the drive very complex compared to classical pulsewidth modulated controlled drives. In this paper, a probabilistic method to study the harmonic contents of voltage in DTC of induction motors is presented. The DTC voltage chain is simulated with a random process. Then, the autocorrelation function of voltage vectors is calculated and its power spectrum density is obtained. The effect of flux and torque hysteresis controller bands, machine parameters, and inverter dc-link voltage on the motor voltage spectrum is investigated. Major harmonics in the DTC voltage spectrum are specified and their behaviors are described. Simulation and experimental results are presented to justify the theoretical analysis.  相似文献   

10.
This paper describes a digital simulation method for the self-controlled synchronous motor (SCSM) in time domain. A generalized machine model in direct three-phase quantities is used to represent the machine and the fourth-order numerical integration technique of Runge, Kutta, and Gill in [17] is used to solve the machine equations. Performance of the synchronous machine with nonsinusoidal voltages and currents is simulated under both steady-state and transient conditions. The effects of the damper windings and saliency on the torque, and voltage and current waveforms are studied using this digital simulation technique when the machine is operated from a voltage source inverter (VSI) and a current source inverter (CSI).  相似文献   

11.
ABSTRACT

In this paper, analysis and design of fault-tolerant converter topology for direct torque-controlled (DTC) induction motor (IM) drive suitable for low, medium and high power applications is proposed. The proposed converter topology can restore normal operation of the drive after the occurrence of open-circuit or short-circuit of power switches in the inverter. It consists of a current-controlled three-level boost converter (TLBC) to boost the dc-link voltage at input terminals of an inverter during post-fault, balance the voltages at dc-link capacitors and retains all the advantages of the conventional IM drive. Simulation and experimental results are presented for pre- and post-fault operation. The results are compared with conventional fault-tolerant DTC of the drive to highlight the merits of proposed converter.  相似文献   

12.
The pulsewidth-modulated (PWM) current-source inverter (CSI) used in AC motor drive applications can be implemented with symmetric gate turn-off thyristors (GTOs). One of the major difficulties in the optimization of the GTO switch and the snubber components of the inverter is the variation in different switching conditions encountered during normal operation. Past work has concentrated on the GTO and snubber components in voltage-source applications, where commutation of the GTO device is an independent process and does not affect the operation of the other inverter devices. This paper proposes the characterization of the GTO and the snubber components by formulation of the CSI equivalent circuit during the device commutation period. From the equivalent circuit, the state equations are derived, thereby obtaining accurate voltage and current waveforms of the GTO and associated snubbers. From the analysis, the component power loss can be calculated and optimization performed. Simulation results are verified by using both a laboratory prototype and medium-voltage drive system  相似文献   

13.
This paper deals with a new multilevel high-voltage source inverter with gate-turn-off (GTO) thyristors. Recently, a multilevel approach seemed to be the best suited for implementing high-voltage power conversion systems because it leads to a harmonic reduction and deals with safe high-power conversion systems independent of the dynamic switching characteristics of each power semiconductor device. A conventional multilevel inverter has some problems; voltage unbalance between DC-link capacitors and larger blocking voltage across the inner switching devices. To solve these problems, the novel multilevel inverter structure is proposed  相似文献   

14.
建立六相感应电动机在两相同步旋转d-q坐标系下的动态数学模型,并分析六相电压源型逆变器的空间矢量脉宽调制(SVPWM)技术。在MATLAB/SIMULINK环境下,构建SVPWM电压源型逆变器供电的六相感应电动机的仿真模型,分别进行六相感应电动机能耗制动、反接制动和回馈制动的动态仿真,并分析这三种制动方式的特点,为电力传动系统的设计提供理论依据。  相似文献   

15.
The single-chip microcomputer MC68701-based inverter gating system is proposed in this paper. The three-phase converter and inverter gatings occur independently and the current source inverter-fed induction motor controller with voltage feedback is also implemented in a single microprocessor. The accuracy of gating is about 1 deg in converter delay angle at line frequency 60 Hz and 0.19 percent in inverter frequency at output frequency 60 Hz. The proposed system is applied to 100-hp induction motor drive.  相似文献   

16.
This paper proposes a novel control scheme of single-phase-to-three-phase pulsewidth-modulation (PWM) converters for low-power three-phase induction motor drives, where a single-phase half-bridge PWM rectifier and a two-leg inverter are used. With this converter topology, the number of switching devices is reduced to six from ten in the case of full-bridge rectifier and three-leg inverter systems. In addition, the source voltage sensor is eliminated with a state observer, which controls the deviation between the model current and the system current to be zero. A simple scalar voltage modulation method is used for a two-leg inverter, and a new technique to eliminate the effect of the dc-link voltage ripple on the inverter output current is proposed. Although the converter topology itself is of lower cost than the conventional one, it retains the same functions such as sinusoidal input current, unity power factor, dc-link voltage control, bidirectional power flow, and variable-voltage and variable-frequency output voltage. The experimental results for the V/f control of 3-hp induction motor drives controlled by a digital signal processor TMS320C31 chip have verified the effectiveness of the proposed scheme  相似文献   

17.
This paper investigates the use of fuzzy logic for fault detection and diagnosis in a pulsewidth modulation voltage source inverter (PWM-VSI) induction motor drive. The proposed fuzzy technique requires the measurement of the output inverter currents to detect intermittent loss of firing pulses in the inverter power switches. For diagnosis purposes, a localization domain made with seven patterns is built with the stator Concordia current vector. One is dedicated to the healthy domain and the six others to each inverter power switch. The fuzzy bases of the proposed technique are extracted from the current analysis of the fault modes in the PWM-VSI. Experimental results on a 1.5-kW induction motor drive are presented to demonstrate the effectiveness of the proposed fuzzy approach.  相似文献   

18.
This paper proposes a trinary hybrid 81-level multilevel inverter for motor drive. Benefiting from the trinary hybrid topology of the inverter, 81-level voltages per phase can be synthesized with the fewest components. Bidirectional DC-DC converters are used not only to inject power to the DC links of the inverter but also to absorb power from some DC links in cases with a lower modulation index. The higher bandwidth of DC-DC converters alleviates the ripples of DC-link voltages caused by the load current. The space vector modulation used here, which selects voltage vectors that generate a zero common-mode voltage in the load, works at a low switching frequency. With up to 81-level voltages per phase, the total harmonic distortion is small, and the relationship between the fundamental load voltage and the modulation index is precisely linear. A vector controller is used to control an induction motor, which results in a high dynamic response for speeds or torques. The performance of the proposed inverter for the motor drive is confirmed by simulation and experiment.  相似文献   

19.
A static VAr compensator (SVC) using a three-level GTO voltage source inverter (VSI) is presented for high-voltage, high-power applications. The three-level VSI has lower harmonic components and higher DC-link voltage than the two-level VSI and thus can be operated at lower switching frequency (fsw<500 Hz) without excessive harmonic contents. From the DQ-transformed equivalent circuit of the presented SVC system, DC and AC analyses are carried out to find the steady-state and the dynamic characteristics of the system. Based on the open-loop transfer function of the system, a controller is designed to achieve fast dynamic response. The experimental results confirm the theoretical analyses and controller design  相似文献   

20.
Three phase voltage-fed inverter induction motor drives are prone to shoot through and other inverter faults that cause the drive system to shut down. The paper describes a novel strategy for restarting the drive in variable voltage variable frequency single phase mode in the presence of open base drive and shoot through fault in the inverter. The proposed method requires only the motor terminal voltages and currents to be measured. Therefore, it can be applied to even low performance open loop drives with the addition of two motor terminal voltage sensors. The starting algorithm has been verified by computer simulation and experiments on a 1 hp laboratory prototype. Experimental results are in good agreement with simulation predictions. The starting strategy described in this paper is expected to provide an economic alternative to more expensive redundancy techniques which find justification only in a few specialized applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号