首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《粉末冶金学》2013,56(2):120-126
Abstract

This paper describes the microstructural and mechanical properties of injection moulded 17-4 PH stainless steel gas and water atomised powder. Gas and water atomised stainless steel powders were injection moulded with wax based binder. The critical powder loading for injection moulding were 62·5 and 55 vol.-% for gas and water atomised powders respectively. Binder debinding was performed using solvent and thermal method. After dedinding the samples were sintered at different temperatures for 1 h in pure H2. Metallographic studies were conducted to determine to extend densification and the corresponding microstructural changes. The results show that gas atomised powder could be sintered to a maximum (98·7%) of theoretical density, and water atomised powder could be sintered to a maximum (97·08%) of theoretical density. Maximum tensile strength was obtained for gas atomised powder sintered at 1350°C. The tensile strength of the water atomised powder sintered at the same temperature was lower owing to higher porosity. Finally, mechanical tests show that the water atomised powder has lower mechanical properties than gas atomised powder.  相似文献   

2.
《粉末冶金学》2013,56(2):112-117
Abstract

Gas and water atomised 316L stainless steel powders with similar powder morphology and particle size were injection moulded and sintered. The results show that compacts prepared from the gas atomised powder exhibit higher density and tensile strength, whereas those prepared from the water atomised powder exhibit higher elongation, finer grain size and superior corrosion resistance. Chemical analysis shows that the water atomised powder has a higher Si and O content, and microstructural analysis of the sintered compacts reveals that SiO2 particles disperse as a second phase in the compacts prepared from the atomised powder, which accounts for the property behaviour. Due to the presence of SiO2, the porosity increases, whereas the pore coarsening and grain growth are inhibited. Besides, SiO2 particles can also improve the passivation effect of stainless steel, and hence increase the corrosion resistance.  相似文献   

3.
《粉末冶金学》2013,56(3):360-365
Abstract

This study aims to compare the effect of Al2O3 nanoparticle additions on the densification and mechanical properties of the injection moulded 316L stainless steels. The 316L stainless steel and Al2O3 nanoparticles were dry mixed and moulded using a wax based binder. The critical powder loading for injection moulding were 60 vol.-% for all samples. Debinding process was performed in solvent using thermal method. After the debinding process, the samples were sintered at 1405°C for 60 and 120 min under vacuum. Metallographic examination was conducted to determine the extend of densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all the samples after wear testing. All the powders, fracture surfaces of moulded and sintered samples were examined using scanning electron microscope. The sintered density of straight as well as Al2O3 nanoparticles reinforced injection moulded 316L stainless steels increases with the increase in sintering time. The additions of Al2O3 nanoparticles improve the hardness and wear resistance with the increase of sintering time.  相似文献   

4.

The feasibility of processing duplex stainless steels with promising properties using a powder metallurgical route, including the consolidation by field-assisted hot pressing, is assessed in this investigation. The influence of the particle size and morphology of the raw austenitic and ferritic powders on the final microstructure and properties is also evaluated for an austenitic content of 60 wt pct. In addition, the properties of a new microconstituent generated between the initial constituents are analyzed. The maximum sintered density (98.9 pct) and the best mechanical behavior, in terms of elastic modulus, nanohardness, yield strength, ultimate tensile strength, and ductility, are reached by the duplex stainless steel processed with austenitic and ferritic gas atomized stainless steel powders.

  相似文献   

5.
none 《粉末冶金学》2013,56(1):28-33
Abstract

The addition of Cu3P for developing the high strength 465 maraging stainless steel from elemental powders was studied. The sintering parameters investigated were sintering temperature, sintering time and wt-%Cu3P. In vacuum sintering, effective sintering took place between 1300 and 1350°C. The maximum sintered density of 7·44 g cm?3 was achieved at 1350°C for 60 min with 4–6 wt-%Cu3P. More than 6 wt-%Cu3P content and temperature >1350°C caused slumping of the specimens. The sintered specimens were heat treated and a maximum ultimate tensile strength (UTS) of 767 MPa was achieved with 4 wt-%Cu3P content. The maximum hardness of 45·5 HRC was achieved in heat treated condition with 4 wt-%Cu3P content. Above 4 wt-%Cu3P content increase in density was observed whereas the response to heat treatment decreased. Fracture morphologies of the sintered specimens were also reported. A comparison of sintering behaviour and mechanical properties of elemental powders with prealloyed powders was also given in the present study.  相似文献   

6.
《粉末冶金学》2013,56(2):144-149
Abstract

In this study, the effect of powder characteristics and their variability on the dimensional variability of green and sintered PIM components has been examined for 316L stainless steel. Three lots of gas atomised and three lots of water atomised powders were characterised and used to make six batches of PIM compound. These compound lots were injection moulded using a cavity pressure transducer and screw position regulation controls. The moulded geometry was measured in the green state and sintered state for dimensional variability. The general findings are that gas atomised powder produce less dimensional variability than the water atomised powder from lot to lot, however, the water atomised powders produce less in lot dimensional variability and are generally less susceptible to distortion of cantilevered members during sintering. Also, the lot to lot variation in the powder characteristics, such as particle size and pycnometer density, have an effect on dimensional stability whereas variations in powder characteristics such as surface area, tap and apparent density, and chemistry have little effect on dimensional stability.  相似文献   

7.
通过选用气雾化及水雾化两种工艺方法制备的不锈钢粉末来制取粉末烧结多孔材料。探讨了粉末形状及松装密度对不锈钢粉末烧结多孔材料制造工艺中的成形压力和烧结温度等工艺参数的影响;研究了原料粉末松装密度对不锈钢粉末烧结多孔材料的透气性、拉伸强度的影响。结果表明:成形压力、烧结温度和制品的透气性受粉末松装密度影响显著。粒度范围为0.18~0.90mm时,气雾化粉末的成形压力比水雾化粉末要高近1倍;当粉末的粒度相同时,采用松装密度大的球形粉末所需的烧结温度比松装密度小的不规则粉末的高60~70℃;粒度为0.45~0.60mm时,选用松装密度为4.13 g/cm3粉末所制备的多孔制品的透气性为3.16×10-10m2,而选用松装密度为2.67 g/cm3的粉末所制备的多孔制品的透气性仅为8.8×10-11m2。不锈钢多孔材料的强度受原料粉末的松装密度影响显著;粒度相同,制备工艺相同时,采用较低松装密度的粉末的制品,能够得到较高的强度。  相似文献   

8.
Investigations of the production of thin-walled steel alloys through the gas carburization of structures made from reduced and sintered metal oxide powders were performed. Extrusions with low-alloy steel composition were produced successfully without the occurrence of metal dusting, yielding a novel technique for the production of thin-walled steel structures. Thin strip geometries (~200 to 300 μm final thickness) of samples with the composition of 4140 steel, without carbon, were produced through the extrusion of a paste of metal-oxide powders. Full reduction and sintering in a 10 pct H2/90 pct Ar atmosphere yielded a metal part containing all necessary alloying elements except carbon. Gas carburization in a controlled CO/CO2 atmosphere was then used to introduce carbon through the thickness of the structure while carburization parameters were controlled such that metal dusting was not observed. It has been shown in this study, through heat treatment and microstructural investigations, that structures with 4140 composition displaying microstructures and mechanical properties comparable with conventionally made steels can be reached in approximately 30 minutes during gas carburization. The research shows that carbon contents above the eutectoid composition can be reached in less than 30 minutes. As a result, a novel alloy development tool has been introduced.  相似文献   

9.
Conclusions A study was made of the effects of various metallurgical factors on the structure and strength and creep characteristics of sintered 13% Cr ferritic steel. The beneficial effect of alloying with molybdenum on these properties is noted and discussed, and the influence exerted by various plastic working conditions is examined. Data yielded by determination of various properties of sintered ferritic steels show that the changes observed are attributable to differences in internal oxidation, diffusion, and carbide formation processes, which play an important part in the evolution and variation of properties during the production of the steels and prolonged testing under load. While internal oxidation and diffusion are of importance from the viewpoint of stability of properties in the initial condition, carbide formation is responsible for embrittlement during creep.Two metallurgical methods may be recommended for preventing this type of brittleness: 1) lowering carbon content of starting powders and finished steels, 2) adding elements having a greater affinity for carbon. The latter method, involving replacing tungsten with titanium, has been adopted at the Centre National Nucléaire Belge. In the light of the investigation that has been carried out, it may be assumed that titanium combines with the carbon in steel, thereby stabilizing the latter's ductility for some thousands of hours. At the same time, the steel matrix is additionally strengthened by precipitated intermetallic phases. However, the required stress-rupture characteristics and creep resistance, comparable with those exhibited by certain austenitic stainless steels, cannot, of course, be achieved by alloying alone. To obtain an even greater strengthening effect, a dispersed oxide phase must be introduced into these ferritic steels. The properties of sintered ferritic steels containing TiO2 inclusions will be the subject of Part II of this article.Translated from Poroshkovaya Metallurgiya, No. 8 (116), pp. 89–102, August, 1972.  相似文献   

10.
Bimodal mixtures improve the green density of powder systems and are used in processes such as slip casting and powder injection molding. The packing density can be predicted with reasonable accuracy, but there is great uncertainty in the sintered density of a bimodal mixture. The large/small composition effect on packing density and sintered density is treated using the specific volume. For a given composition, the packing density is accurately predicted when four parameters are known: particle size ratio, packing density of the small powder, packing density of the large powder, and mixture homogeneity. Prediction of the sintered density is possible from knowledge of the densification of the large and small powders and mixture homogeneity. The model is applied to bimodal mixtures of molybdenum, stainless steel, iron, and alumina. Certain criteria must be satisfied by the constituent powders for a bimodal mixture to exhibit the highest sintered density. In many situations, the highest sintered density occurs at the 100 pct small powder composition.  相似文献   

11.
本文研究了用不锈钢粉末轧制多孔生带材,经烧结、卷曲和焊接等工艺生产多孔管材的方法。粒度大于5mm的气体雾化不锈钢丸经涡旋研磨机破碎成粒度组成为-100+250目的不锈钢粉末,再用上述工艺获得壁厚为0.8-1.2mm的多孔不锈钢管。其相对渗透性可达(3~7)×10-3L·N/cm2·min·mmH2O,平均孔径为6-15μm。  相似文献   

12.
Conclusions The strength of porous sintered sheet materials can be evaluated by the formaulas of Bal'shin, Ryshkevich, and Shcherban'. We determined the values of the constants in these formulas for sheets of powdered strainless steel of joint reduction, calcium hydride titanium, nickel, and Nichrome.In technological tests the largest number of reversed bendings is sustained by porous sheets rolled from powders of fine fractions. Differences in the plasticity of porous sheets from powdered stainless steel and Nichrome manifest themselves with bending radii of 2 and 5 mm.Translated from Poroshkovaya Metallurgiya, No. 2(302), pp. 92–96, February, 1988.  相似文献   

13.
14.
The objective of this work is focused on understanding the effect of microwave heating on sintering of 316L powders. The stainless steel samples were prepared from prealloyed powders of 316L. The powder samples were compacted at a pressure of 560 MPa and sintered at 1300°C in a microwave furnace of 2.4 GHz and 2KW capacity in nitrogen atmosphere. The sintering time was varied from 10 to 20 minutes in order to study the effect of sintering time on sintering behavior and mechanical properties of the sintered samples. The sintered samples were subjected to optical metallography, hardness testing, tensile testing and fractogrphy. The average density of sintered stainless steels was 92% of the theoretical density, approximately 18% increment from green density for 20 min. sintering time. Microstructural analysis showed the regularly distributed porosity with very small grains. The hardness value was in the range of 365VHN to 396VHN and tensile strength, in the range of 255MPa to 580 MPa. Fractographs for these steels revealed mixed mode of fracture.  相似文献   

15.
《粉末冶金学》2013,56(3):146-150
Abstract

The origin of inclusions in a water-atomized 3·5%Ni steel powder and their subsequent behaviour during sintering have been investigated. Four samples of the powder were produced under different melting and atomizing conditions. For example, both acid SiO2 and basic MgO linings were used in the melting furnace. The volume fraction of inclusions was measured for the powders in the as-delivered and sintered conditions. Similarly, the chemical composition of individual inclusions was determined using electron microprobe techniques. The analysis showed the inclusions to be mainly complex oxides. Those oxides formed from elements less stable than SiO2 were reduced by the sintering process. These oxides originated mainly from the alloying elements present in the steel powder. The residual stable complex oxides containing silicon, aluminium, magnesium, calcium, sodium, and sulphur were shown to originate from the refractories and atomizing medium used. A much lower volume fraction of inclusions was measured for the powder produced with fewer silicon-containing refractories in the atomizing system. Other measures to help minimize the inclusion levels in water- atomized low-alloy powders during their manufacture are highlighted. PM/0175  相似文献   

16.
金属粉末微注射成形技术(Micro MIM)在大规模生产微型产品领域有其特有的优势。将316L不锈钢细颗粒粉末进行混料、脱粘和烧结后制备了微型工件,对烧结过程进行数学建模得出注射料的本构方程,并对剪切黏稠度、体黏稠度、烧结应力等参数进行标定,实现了对316L不锈钢粉末烧结过程中的收缩率、相对密度等的有限元模拟,模拟结果与实验数据吻合良好。  相似文献   

17.
Abstract

Powder metallurgical (P/M) processing has the main advantage of making near net shape products. Nowadays, in automobile industries, stainless steels have become the most promising material owing to their good corrosion resistance. In the current study, 316L and 434L stainless steel powders were sintered using microwave and conventional methods through powder metallurgy route. The effects of sintering modes on the microstructure, mechanical properties and corrosion responses of 316L and 434L stainless steel composites are investigated in detail. The results showed that the sample prepared through microwave sintering route exhibited significantly superior densification, higher hardness and better corrosion resistance as compared to the conventionally processed counterpart. On the whole, 316L composites showed better corrosion resistance than 434L stainless steels.  相似文献   

18.
《粉末冶金学》2013,56(3):254-265
Abstract

Tungsten based W–1C and W–2B4C–1C (wt-%) powders synthesised by mechanical alloying (MA) for milling durations of 10, 20 and 30 h, in wet (ethanol) and dry conditions, were characterised. X-ray fluorescence spectroscopy investigations revealed Co contamination which increased with increasing milling time during wet milling. X-ray diffraction investigations revealed the presence of W and WC phases in all powders, Co3C intermetallic in the wet milled W–1C powders and W2B intermetallic phase in both wet and dry milled W–2B4C–1C powders. As blended and MA processed powders were consolidated into green compacts by uniaxial cold pressing at 500 MPa and solid phase sintered at 1680°C under hydrogen and argon atmospheres for 1 h. X-ray diffraction investigations revealed the presence of W2C intermetallic phase in sintered composites produced from both wet and dry milled W–1C powders and the W2B intermetallic phase in sintered material from the wet milled W–2B4C–1C powder. Sintered composites from wet milled powders showed relative densities >91%, with the maximum density of 99·5% measured for the sintered 30 h wet milled W–2B4C–1C composites. Microhardness values for the wet milled W–1C and W–2B4C–1C composites were 2–2·5 times higher than those for dry milled composite powders. A maximum hardness value of 23·7±2·1 GPa was measured for the sintered W–2B4C–1C composite wet milled for 20 h.  相似文献   

19.
Stainless-steel-based surface composites reinforced with TiC and SiC carbides were fabricated by high-energy electron beam irradiation. Four types of powder/flux mixtures, i.e., TiC, (Ti + C), SiC, and (Ti + SiC) powders with 40 wt. pct of CaF2 flux, were deposited evenly on an AISI 304 stainless steel substrate, which was then irradiated with an electron beam. TiC agglomerates and pores were found in the surface composite layer fabricated with TiC powders because of insufficient melting of TiC powders. In the composite layer fabricated with Ti and C powders having lower melting points than TiC powders, a number of primary TiC carbides were precipitated while very few TiC agglomerates or pores were formed. This indicated that more effective TiC precipitation was obtained from the melting of Ti and C powders than of TiC powders. A large amount of precipitates such as TiC and Cr7C3 improved the hardness, high-temperature hardness, and wear resistance of the surface composite layer two to three times greater than that of the stainless steel substrate. In particular, the surface composite fabricated with SiC powders had the highest volume fraction of Cr7C3 distributed along solidification cell boundaries, and thus showed the best hardness, high-temperature hardness, and wear resistance.  相似文献   

20.
以NiCrAlY和Y2O3粉末为原料通过两种工艺分别制备出团聚烧结和混合型NiCrAlY-Y2O3金属陶瓷粉末,研究了该两种用于热喷涂给料粉末的颗粒形貌及粉末性能.使用该两种粉末及一种商用CoCrAlY-Y2O3通过超音速火焰喷涂(HVOF)在不锈钢基体上制备厚度约为100um的涂层。研究了涂层的孔隙率及抗热冲击能,将四种热喷涂涂层在高温下与MnO,Fe3O4及含锰碳钢进行接触反应后对它们的抗结瘤性能进行了相对的静态比较,结果表明,团聚烧结NiCrAlY-Y2O3涂层具有较好的抗锰氧化物的结瘤,而抗铁氧化物结瘤性能差。团聚烧结金属陶瓷涂层比混合型陶瓷涂层具有更好的抗氧化物结瘤性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号