首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小型高速离心风机的特点是体积紧凑、压力高、转速高,广泛应用于各类要求较高的特殊领域。在实际应用中,除了必须满足气动性能要求外,首要问题就是风机噪声控制,而小型高速离心风机与常规风机噪声特点又有所差别,以高频噪声为主。本文针对小型高速离心风机噪声特点,根据马大猷教授提出的微穿孔消声理论设计了风机进口微穿孔消声器,对该微穿孔板消声器的降噪效果进行了测试,试验结果表明该微穿孔消声器可以有效降低风机噪声。  相似文献   

2.
针对微穿孔结构的消声特性,结合时程精细积分法和声学边界条件,推导了双层微穿孔管消声器的声传递矩阵公式,并编程计算了双层微穿孔管消声器的声学性能。得到消声器的计算结果与有限元计算结果吻合较好,验证了传递矩阵法可以比较准确地预测双层消声器的声学性能。之后传递矩阵法被应用于分析穿孔段长度、外层膨胀腔厚度以及穿孔直径对消声器声学性能的影响,该方法为微穿孔管消声器的优化设计提供了新的研究方法,相对有限元法可节省大量时间。  相似文献   

3.
首先通过试验分析了燃料电池车用风机的噪声特性。然后对微穿孔管消声器传递损失的数值计算方法进行了试验验证。进而采用数值方法研究了微穿孔管消声器的穿孔段长度对其传递损失的影响规律。通过研究发现,在一定范围内,微穿孔管消声器的传递损失共振频率随穿孔段长度呈线性变化。研究成果为用于风机降噪的微穿孔管消声器设计提供指导意义。  相似文献   

4.
穿孔和非穿孔消声器压力损失研究   总被引:1,自引:0,他引:1  
本文利用三维CFD方法,研究了抗性消声器内部流体动力学仿真和压力损失计算的过程,分析了四种穿孔和非穿孔单腔消声器的流场流速和压力分布,研究了相应的压力损失随入口流速的变化趋势.得出结论:,穿空管消声器的流体动力学性能要好于非穿孔类消声器,对膨胀腔冲击比较小;在相同边界条件下,穿孔管消声器的压力损失大于非穿孔类消声器.对复杂抗性消声器的设计有比较好的参考价值.  相似文献   

5.
介绍了泵源液压系统振动与噪声产生的原因,分析了液压系统振动与噪声的危害。设计制造了一种基于流体—结构耦合振动的结构共振式液压脉动滤波器,在转运车泵源液压系统压力脉动测试试验平台上进行了2组试验。测试了泵源液压系统实际工况的压力脉动和安装滤波器后系统的压力脉动情况,得出2种试验条件下的液压脉动波动幅度和脉动率。验证了结构共振式液压脉动滤波器的使用效能和不足,为液压系统振动控制提供了新的技术手段。  相似文献   

6.
微孔消音技术在柴油机上的应用肇庆市自动化仪表厂林松茂微穿孔板(或筒)消声器是一种新型的消声设备,它具有宽频带、体积小、高效力的消声特性,在使用时能耐高温,不怕油污、潮湿等恶劣环境.本身结构简单,一般工厂都能自行制造.微穿孔消声器的原理:经过喷口喷出的...  相似文献   

7.
提出了串联囊式衰减器压力脉动抑制性能的高精度计算方法,解决了现有模型理论计算结果和实验结果误差较大的问题;新方法建模过程中考虑了开有狭长椭圆小孔的微穿孔板声阻抗对脉动抑制性能的影响,并在考虑末端声学修正的基础上计算了不同孔形微穿孔板的声阻抗,研究了微穿孔板主要设计参数对脉动抑制性能的影响规律。结果表明:采用该方法得到的计算结果和实验结果的一致性更高、精度更高;含椭圆小孔微穿孔板的厚度、缝隙宽度及穿孔率对衰减器的压力脉动抑制性能有较大影响。  相似文献   

8.
高转速的干式螺杆空压机的排气管路中的噪声都比较大,为了有效降低螺杆空压机的排气噪声,利用双层微穿孔板声学理论,建立了由微穿孔板的孔径、板厚、穿孔率、腔深等结构参数计算双层微穿孔板结构扩散场吸声特性的数学模型,设计了一种适合该类空压机用的消声器,并利用遗传算法对其结构参数进行优化,得到双层微穿孔板最佳的吸声特性。优化结果表明:优化后的双层微穿孔板消声器的吸声系数比优化前大大提高,更有利于高转速干式螺杆空压机减噪的需求。  相似文献   

9.
引言在各种流体系统中,流源(如液压泵、水泵、空气压缩机等)要周期性地泵送工作介质,因而就不可避免地要产生流量与压力脉功,产生振动和噪声。这种脉动除与泵源本身特性有关外,还与负载及管路系统密切相关。通常,这种脉动是十分有害的,为了对其进行抑制,人们研制了各种流体滤波消声器(在液压系统中常称为液压滤波器,在气体系统中常称为消声器、消振器等)。实践证明,滤波消声器对于抑制流体系统的脉动,提高系统的工作质量,降低噪声是行之有效的。常常可以将70~80%以上的波动抑制掉。一、滤波消声效果的评价准则关于流体滤波消声效果的评价准则,目前尚无统一标准,不同的工作介质系统提出了不同的评价方法。如在气流消声系统中,常用插入损失IL和透射损失TL来评价消声效果。  相似文献   

10.
本文通过复杂结构抗性消声器流体动力学建模、仿真和数据后处理等过程,讨论了利用计算流体力学方法计算消声器的压力损失方法,分析了消声器内部的结构对消声性能和压力损失的影响。得出结论:穿孔管结构能够改善消声器内部的流体动力学特性,并且是影响消声器压力损失的重要因素;穿孔管和内插管相结合的结构对有比较好的消声效果。利用试验数据和计算机仿真分析,验证了利用CFD技术进行消声器压力损失预测的可行性。  相似文献   

11.
漩涡风机是燃料电池汽车的主要噪声源之一。首先进行漩涡风机噪声测试,分析风机噪声特性,并以此为根据,确定用于降噪的消声器类型。继而建立了微穿孔管消声器传递损失的有限元模型,并通过试验验证了其正确性。然后基于漩涡风机的噪声特性,采用遗传算法对微穿孔管消声器进行结构优化,获得良好的降噪效果,优化后的微穿孔管消声器目标频率范围内消声量基本达到30dB以上,可以满足漩涡风机中高频的降噪目标。  相似文献   

12.
为复杂抗性消声器的设计和后期优化做准备,采用FLUENT软件,对扩张管、内插管、穿孔板和穿孔管式的消声单元的压力损失进行数值仿真分析,首先通过半经验公式与数值仿真分析方法对不同进气速度下的扩张管的压力损失进行对比,验证了后者的正确性;然后通过对各种消声器单元设置不同的结构参数(扩张比、穿孔率等)和进气速度,最终获得上述各种因素对抗性消声器单元压力损失的影响规律。该研究有助于减少甚至消除消声器优化设计的盲目性,提高设计水平。  相似文献   

13.
双穿孔管消声器分析研究   总被引:1,自引:0,他引:1  
首先用Sysnoise软件对不同穿孔率的消声器传递损失做了分析,发现不同的穿孔率对某些频率的降噪作用相同.为了寻找穿孔率和排气压力的关系,利用Fluent软件对穿孔率不同的消声器内流场做了分析计算,证明减小穿孔率后,虽然流动有序,但是排气压力增大.  相似文献   

14.
液压泵脉动式的流量输出流经管路后会产生压力脉动,采用液压脉动衰减器能衰减液压泵出口的压力脉动.通过改变自身参数来适应随时改变的压力脉动的随动液压脉动衰减器成为研究的热点,随动液压脉动衰减器能够精确有效衰减系统的压力脉动,使液压脉动衰减器的衰减性能发挥到最大化.重点介绍了现有的随动液压脉动衰减器的结构、设计方法和原则以及...  相似文献   

15.
《机械强度》2015,(4):781-784
基于流体力学的方法,运用数值计算找出不同流速下消声器的压力损失。然后利用Fluent软件对某款消声器的压力损失进行仿真分析,研究消声器结构对压力损失的影响,分析压力损失产生的原因。在此基础上对消声器的结构进行优化。研究结果表明,消声器内插管和穿孔率的合理布置可以有效降低压力损失,进而为消声器的优化设计提供依据。  相似文献   

16.
将气体消声器设计理论中的格林函数法扩展到计算和分析具有矩形、正方形截面的扩张室液压脉动衰减器的滤波特性,在平面波截止频率范围内,这两种截面型式脉动衰减器的插入损失理论曲线与实验测量结果吻合较好,证明了该方法同样可用于计算矩形和正方形截面的扩张室压力脉动衰减器的滤波特性。而针对圆形截面,为避免坐标系变换带来的麻烦,引入消声器声学特性研究中最常使用的一维解析法,其计算结果也与实验测量值吻合良好。通过对这三种不同截面扩张室脉动衰减器插入损失的比较,可以得出:控制扩张室腔体截面周长一定的前提下,在2 kHz测试频带内,圆形截面具有最优的滤波特性,正方形截面次之,而矩形截面脉动衰减性能最差。  相似文献   

17.
一、引言液压系统的压力脉动,降低了系统的可靠性和工作性能,降低了元件的寿命,增加了系统的噪音,污染环境。为了控制液压系统的压力脉动,除了合理进行泵的设计外,采用蓄能器是众所周知的一种方法。但采用普通蓄能器消除液压系统的压力脉动尚不够理想,因此国  相似文献   

18.
陈季萍 《机械》2006,33(5):60-61,64
液压系统中的压力脉动会使系统的工作品质恶化,通过对液压系统中产生压力脉动的机理分析,将被动滤波和主动滤波两种降低压力脉动的方法进行对比,认为主动滤波是降低压力脉动的一种行之有效的方法。  相似文献   

19.
旋转式压缩机消声器是设置在压缩机泵体排气口处的,其作用是降低气流脉动以降低噪声,改善压缩机性能.由于转子旋转一转就完成了一次排气过程,所以消声器所受的压力脉动也是周期性变化的.消声器在这种交变应力作用下容易产生疲劳破坏,因此必须对其强度进行校核.本文运用有限元仿真技术,从流体和结构两方面对消声器进行有限元分析,对消声器的内部流场进行模拟,考虑消声器的多种工况和加工工艺,对其进行了静态强度校核以及疲劳强度校核,从而对其可靠性进行判断.  相似文献   

20.
典型液压管路谐振的实验研究   总被引:2,自引:0,他引:2  
任何液压系统中都会存在流量和压力脉动:元件和管路的设计或使用不当会导致压力和流量脉动;液压系统工作时,阀门的开闭、液压缸的起动停止、负载的变化等也能引起压力脉动,而泵是液压系统中经常存在的最重要的脉动源。当脉动频率为某些特定值时,会引起液压管路谐振。谐振状态下的脉动值可能比非谐振状态下大数倍甚至数十倍,这会严重地影响液压系统的工作和寿命。因此,在飞机液压系统、火箭燃油输出系统等的管路设计中,都应避免产生谐振。由于液压系统中可能产生各种不同频率的脉动,所以产生短时的谐振是难免的。这时的危害程度主要取决于谐振峰值的大小。本文概述了对三种典型液压管路进行谐振实验的方法及结果,并由此得出影响谐振  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号