首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
通过在载体制备过程中加入不同含量的纳米 SiO2分散液,制备了不同纳米 SiO2含量的 NiMo/γ-Al2O3加氢催化剂,研究了纳米 SiO2的加入对催化剂加氢性能的影响;采用 N2吸附-脱附、NH3-TPD、FTIR、H2-TPR、HRTEM 等方法对载体及催化剂进行了表征。实验结果表明,添加纳米 SiO2使催化剂的硫化度整体提高,催化剂的酸量增加;当载体中纳米 SiO2含量达到 6%(w)时,催化剂的 MoS2片晶长度最短、片晶层数最多,催化剂的中强酸量和 B 酸量达到最大值,催化剂的加氢性能最佳;在压力 4.0 MPa、温度 340 ℃、液态空速 2.0 h-1、氢气与原料油体积比 600∶1 的条件下,该催化剂的加氢脱硫率和加氢脱氮率分别达到 91% 和 88%。  相似文献   

2.
以硝酸铝和碳酸氢铵为原料,采用固相反应法,在低温条件下制备出γ-Al2O3的前驱体碳酸铝铵(AACH),然后挤条、焙烧,成功制备出高比表面积和大孔体积的γ-Al2O3载体。考察了原料配比、陈化温度等参数对碳酸铝铵合成的影响。采用X射线衍射、BET物理吸附、扫描电子显微镜、固体核磁共振、高分辨透射电镜等手段对AACH和γ-Al2O3载体进行了表征。以柴油中较难脱除的二苯并噻吩(DBT)为模型化合物,在高压微反装置上评价了由上述γ-Al2O3载体制备的Ni-Mo-P/γ-Al2O3催化剂的加氢脱硫活性。结果表明,最佳原料配比下,较高的陈化温度和添加PEG有利于得到结晶度较好的纯相碳酸铝铵;以其焙烧后的γ-Al2O3为载体的Ni-Mo-P/γ-Al2O3催化剂的加氢脱硫活性明显高于以传统γ-Al2O3作载体制备的催化剂。  相似文献   

3.
设计了以γ-Al2O3为酸性载体、非贵金属Ni和Nb2O5为活性中心的催化剂x%Ni-y%Nb2O5/γ-Al2O3(x%为Ni质量分数,x=1,2,3,4,5;y%为Nb2O5质量分数,y=10,20),考察催化剂中Ni、Nb2O5含量和反应工艺条件对该催化剂催化生物燃料含氧中间体1,5-双-(四氢呋喃基)-3-戊酮加氢脱氧反应的影响。结果表明:在反应温度为260℃、H2压力为3MPa、反应时间为24h的条件下,4%Ni-20%Nb2O5/γ-Al2O3催化1,5-双-(四氢呋喃基)-3-戊酮加氢脱氧制备长链烷烃的碳摩尔收率总和达89.6%,其中C11烷烃、C12烷烃和C<...  相似文献   

4.
 以柠檬酸(CA)为助剂,采用不同浸渍方法制备NiW-CA加氢脱硫催化剂,考察了不同浸渍方法对催化剂性质及其柴油加氢脱硫活性的影响;采用TPR、SEM-EDS、XRD、HRTEM等手段对催化剂进行表征。结果表明,添加柠檬酸助剂能够减弱NiW催化剂中金属组分与载体的相互作用,有利于金属组分在硫化过程中的再分散,增加金属的硫化度和WS2晶粒的堆叠,因而提高催化剂的加氢脱硫活性,活性由大到小的顺序为先浸渍柠檬酸的催化剂CA+M、共浸渍柠檬酸的催化剂CAM、后浸渍柠檬酸的催化剂M+CA。  相似文献   

5.
 制备了不同Co负载量的系列Co/γ-Al2O3催化剂,采用XRD、H2-TPR和H2-TPD等方法对其进行表征,并考察Co负载量对Co/γ-Al2O3催化剂催化F-T合成反应性能的影响。结果表明,随Co负载量的增加,Co/γ-Al2O3催化剂的催化活性先增加后降低,在Co负载量25%附近达到最大。Co/γ-Al2O3催化剂上Co3O4晶粒尺寸随Co负载量增加而逐渐增大,而催化剂的还原温度变化不大,催化剂的还原度和氢吸附量则随Co负载量增加先增大后降低。Co/γ-Al2O3催化剂的催化活性与其氢吸附量呈线性关系。  相似文献   

6.
通过高温焙烧制备了介孔Al2O3载体,再用湿浸渍法制备了负载型介孔催化剂Ni/Al2O3。利用XRD,N2吸附-脱附,H2-TPD等对催化剂进行了表征,并以月桂酸甲酯为反应物,评价了催化剂的加氢脱氧性能。实验结果表明,制备的Ni/Al2O3催化剂保持了载体Al2O3的介孔结构,且随载体焙烧温度的升高,催化剂的比表面积降低、平均孔径增大、金属Ni的晶粒尺寸增大、活性氢物种的供应能力呈火山型变化趋势。载体比表面积的适当降低,有利于催化剂表面活性中心的形成,提高催化剂的活性氢物种供应能力;催化剂孔径增大能促进反应物和产物分子的迁移扩散。NiAl-700具有最佳的活性氢物种供应能力和大的平均孔径,在400℃、2.0 MPa、H2/油体积比500、液态空速1.5 h-1的条件下,月桂酸甲酯转化率为77.53%,烷烃选择性为71.0%,主...  相似文献   

7.
 制备了添加螯合剂柠檬酸(CA)和乙二胺四乙酸(EDTA)的Co-Mo-P/TiO2-γ-Al2O3加氢脱硫催化剂,并对其进行了BET、SEM和H2-TPR表征。以FCC汽油重馏分为原料,考察了螯合剂对Co-Mo-P/TiO2-γ-Al2O3催化剂选择性加氢脱硫性能的影响。结果表明,添加CA或EDTA均可不同程度地提高Co-Mo-P/TiO2-γ-Al2O3催化剂的比表面积;适量的加入CA或EDTA可有效改善活性组分在载体上的分散状态,减弱活性组分与载体间的相互作用;加入CA可明显改进催化剂的选择性加氢脱硫性能;而加入EDTA同时提高了催化剂的脱硫活性和加氢活性,没能改善催化剂的选择性加氢脱硫性能。  相似文献   

8.
采用共沸蒸馏-均匀沉淀法辅以超声波分散技术制备了纳米γ-Al2O3(γ-Al2O3(Ⅰ)),并以γ-Al2O3(Ⅰ)与商品γ-Al2O3(γ-Al2O3(Ⅱ))为载体,采用等体积浸渍法制得了Co与Mo负载量(分别以CoO与MoO3的质量分数计)分别为6%和16%的CoMo/γ-Al2O3(Ⅰ)与CoMo/γ-A12O3(Ⅱ)催化剂,采用间歇搅拌釜考察了催化剂的苯酚加氢脱氧性能。BET,SEM,XRD,H2-TPR,NH3-TPD表征结果表明,γ-Al2O3(Ⅰ)载体呈纤维介孔状,具有较大的比表面积、孔体积及适宜的孔分布。相对于CoMo/γ-A12O3(Ⅱ)催化剂,CoMo/γ-Al2O3(Ⅰ)催化剂的活性组分高度分散于γ-Al2O3(Ⅰ)载体表面,还原性能较高,酸中心较多。苯酚加氢脱氧反应结果表明,CoMo/γ-A12O3(Ⅰ)催化剂具有较高的加氢脱氧活性,苯酚转化率为79.2%,苯选择性为89.3%。  相似文献   

9.
 以负载于γ-Al2O3的Mo及Ni-Mo金属氧化物为前躯体,采用程序升温方法,分别制备了负载型Mo及Ni-Mo氮化物和碳化物催化剂。采用元素分析、X射线衍射(XRD)、程序升温还原(H2-TPR)技术对所制备的催化剂进行了表征,并考察了它们对苯甲酸乙酯的加氢脱氧(HDO)反应的催化性能。结果表明,负载型Mo及Ni-Mo氮化物及碳化物对苯甲酸乙酯HDO反应都具有很高的催化活性,且碳化物比氮化物更为稳定。在HDO反应过程中,积炭可能是造成催化剂失活的重要原因。  相似文献   

10.
用智能质量分析仪(Intelligent Gravimetric Analyser)测得了不同温度下异戊二烯(Isoprene)、戊烯-1(Pentene-1)及噻吩(Thiophene)在Co-Mo/γ-Al2O3选择性加氢脱硫催化剂上的吸附-脱附等温线及程序升温脱附曲线(TPD),并研究了三者在该催化剂上的扩散性能。结果表明,噻吩、异戊二烯、戊烯-1在Co-Mo/γ-Al2O3选择性加氢脱硫催化剂上的饱和吸附量依次降低;噻吩与该催化剂存在2种吸附作用,即物理吸附和化学吸附,化学吸附形成Co-Mo-S相,可有效地提高加氢脱硫催化剂的脱硫效果,而戊烯-1和异戊二烯在该催化剂上只存在1种弱吸附作用;3种吸附质中,戊烯-1相对扩散系数最大,噻吩和异戊二烯的相对扩散系数较小且相近。  相似文献   

11.
采用吡啶吸附红外表征分析了不同N2预处理条件对Re2O7/Al2O3催化剂酸性的影响,进而考察了催化剂的丁烯歧化制丙烯性能。结果表明:随着N2预处理时间的延长,催化剂的L酸量明显增加,同时引起了初始阶段异构化活性的增加和催化剂寿命的延长。歧化反应需要催化剂酸性和歧化活性适宜的匹配。  相似文献   

12.
 分别采用超声波辐照浸渍法和普通浸渍法制备了MnO2/γ-Al2O3催化剂,运用电感耦合等离子体原子发射光谱(ICP-AES)和X射线衍射(XRD)对催化剂进行表征,在空气-异丁醛-MnO2/γ-Al2O3体系中评价其对加氢柴油的氧化脱硫催化性能,并考察了反应温度、异丁醛用量、空气流量、溶剂类型和剂/油体积比对柴油氧化脱硫反应的影响。结果表明,超声波辐照浸渍法制备的MnO2/γ-Al2O3催化剂对柴油氧化脱硫的催化性能明显优于普通浸渍法制备的催化剂。最适宜的催化柴油氧化脱硫反应的条件为:乙腈为溶剂、加氢柴油30 mL、温度35℃、异丁醛20 mmol、空气流量0.06 L/min、超声波辐照浸渍法制备的MnO2/γ-Al2O3催化剂0.08 g、剂/油体积比1/6和催化氧化时间10 min。在此条件下可将柴油硫质量分数从542μg/g 降至31μg/g,柴油脱硫率和回收率分别为94.3%和93.3%。  相似文献   

13.
以鳞片石墨为原料,通过Hummer法合成氧化石墨(GO),然后与拟薄水铝石溶液充分混合后还原,得到还原氧化石墨烯 氧化铝复合载体(rGO-Al2O3),再采用浸渍法制备出负载型Ni2P/rGO-Al2O3催化剂。通过扫描电子显微镜、物理吸附仪和X射线衍射仪等手段对催化剂进行了表征。以苯甲醛加氢脱氧(HDO)制甲苯为反应体系,在反应温度300℃、压力2.5 MPa、反应时间4 h条件下,对比了rGO-Al2O3复合载体与单独rGO或Al2O3负载的Ni2P催化剂的加氢脱氧性能。结果表明,rGO-Al2O3具有发达的孔结构和较大的表面积,Ni2P/rGO-Al2O3催化剂展现出良好的催化活性和选择性。  相似文献   

14.
在氢氧化铝干胶挤条成型时,调节纳米炭黑的加入量和水/粉质量比,制备了孔径呈双峰分布、具有较大孔容和比表面积的γ-Al2O3载体。当炭黑加入质量分数为13%、水/粉质量比1.15时,制备的孔径呈双峰分布的γ-Al2O3载体的孔容为0.80mL/g、比表面积为309m2/g,4~10nm和10~15nm孔径分别占总孔容50.8%和35.1%(体积分数),采用该载体制备的NiMoP/γ-Al2O3催化剂的孔径呈明显的双峰分布。在反应温度370℃、氢分压10MPa、氢/油体积比700、体积空速1.5h-1的条件下,制备的NiMoP/γ-Al2O3催化剂可使减压和焦化混合蜡油的硫质量分数由25600μg/g降至2070μg/g,脱硫率为91.9%,而参比催化剂仅可使减压和焦化混合蜡油硫质量分数降至3450μg/g,脱硫率为86.5%。  相似文献   

15.
采用水热处理的方法对Mo Ni/Al2O3催化剂的微观孔结构性质和负载金属的结构性质进行调变,并考察调变后催化剂在硫醚化反应中的催化性能。结果表明,水热处理可增加催化剂的平均孔径,有利于产物中形成的大分子异构硫醚的扩散,维持催化剂的稳定性;还可以降低负载金属与载体间的作用,提高负载金属的硫化度,增加Ni Mo S活性中心数目。然而,这些对催化剂结构性质的促进作用,不仅提高了硫醚化反应过程的硫醚化反应和二烯烃选择加氢反应性能,还大大促进了烯烃的加氢饱和反应,造成反应产物辛烷值的损失。  相似文献   

16.
制备了Mg改性Cr2O3/Al2O3催化剂,利用XRD,UV-Vis,XPS,H2-TPR,NH3-TPD,TG等方法考察了新鲜和再生后催化剂的结构与性能。实验结果表明,助剂Mg的添加有利于催化剂再生后的物相结构稳定;随再生次数的增加,催化剂孔径增大,比表面积降低,催化剂表面Cr6+含量降低,Cr6+组分逐渐不可逆还原为Cr3+等稳定状态;催化剂表面主要为弱酸和中强酸,随再生次数的增加,酸量减少,但酸强度增加,Cr物种价态及其与载体的相互作用影响了表面酸性进而影响了催化剂活性;新鲜催化剂催化活性略高于再生催化剂,经多次再生后催化剂性能趋于稳定,丙烷转化率稳定在30%左右,丙烯选择性在88%以上。  相似文献   

17.
预处理及反应条件对负载型钌催化剂甲烷化性能的影响   总被引:2,自引:1,他引:1  
采用浸渍法制备了w(Ru)=0 5%的Ru/Al2O3催化剂,研究了催化剂在不同的焙烧温度及还原温度下的甲烷化性能。结果表明,还原温度和焙烧温度能明显改变甲烷化的性能。同时,也考察了Cl-对甲烷化性能的影响,并求得在0 5%Ru/Al2O3催化剂作用下CO和CO2甲烷化反应的表观活化能分别为125 4kJ/mol和89 8kJ/mol。  相似文献   

18.
采用介孔γ-Al2O3对微孔SAPO-34分子筛进行复合改性,利用水热包覆技术制备了γ-Al2O3/SAPO-34复合催化剂,研究了复合催化剂物化性质及其对甲醇制低碳烯烃(MTO)反应的催化性能。采用X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、氨气程序升温脱附法(NH3-TPD)和物理吸附仪(BET)等手段对不同γ-Al2O3/SAPO-34复合催化剂的晶相组成、骨架结构、微观形貌、表面酸性及孔结构进行分析表征。结果表明,与物理共混催化剂相比,水热包覆法制得γ-Al2O3/SAPO-34复合催化剂形成了包覆相和微-介孔结构(微孔比表面积123 m2/g,介孔比表面积95 m2/g)。在常压、催化剂装载量1 g、水/醇摩尔比2/1、原料进料体积空速2 h-1、N2流速20 mL/min、反应温度380  ℃条件下,复合催化剂表现出优越的催化性能和反应寿命,甲醇转化率和低碳烯烃选择性分别达到100%和88%,催化剂寿命达到990 min,与物理共混催化剂相比,复合催化剂寿命延长了640 min。  相似文献   

19.
针对当前FCC汽油选择性加氢脱硫技术中的硫醚化反应催化剂的研究,利用FCC汽油评价了Mo Ni/Al2O3催化剂的硫醚化反应催化性能,并进行了工艺条件优化和催化剂寿命评价。结果表明,Mo Ni/Al2O3催化FCC汽油硫醚化反应的优化条件为反应压力25 MPa、空速4 h-1、H2/油体积比3、反应温度130℃,在该条件下Mo Ni/Al2O3催化FCC汽油硫醚化反应运转600 h,硫醇转化率维持在95%以上,二烯选择性加氢率在100%,烯烃未发生加氢现象,辛烷值保持恒定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号