首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
状态反馈精确线性化永磁同步电动机转速控制   总被引:2,自引:0,他引:2  
对采用微分几何方法设计永磁同步电机转速控制器的可行性进行了研究.从永磁同步电机的数学模型出发,运用微分几何理论,讨论了控制永磁同步电机转速的理论基础,给出了永磁同步电机可以进行精确线性化和输出函数可以取电机转速的条件;在此基础上设计了状态反馈控制器,研究了这种控制器的动态响应特性和抗干扰能力.将这种控制器与同一数学模型下PI控制器进行了控制结果的仿真对比,结果表明,利用微分几何理论设计控制器对永磁同步电机模型进行控制是完全可行的,且有更高的控制精确度和稳态特性,动态性能得到明显改善.  相似文献   

2.
伺服增益是影响伺服控制系统动态性能的主要因素之一.以永磁同步电动机(PMSM)伺服系统的速度控制作为研究对象,基于伺服系统电气刚度的研究,针对不同频率的外界扰动,调整PI速度控制器增益或者系统总转动惯量,从而能够快速、准确地提高伺服系统的电气刚度,并提出了对交流伺服控制器参数进行整定的一种思路,且通过控制器的控制模型试验得以验证,得出实用的结论.  相似文献   

3.
A hybrid neuro-fuzzy scheme for online tuning of a genetic-based proportional-integral (PI) controller for an interior permanent-magnet synchronous motor (IPMSM) drive is presented in this paper. The proposed controller is developed for accurate speed control of the IPMSM drive under various system disturbances. In this work, initially different operating conditions are obtained based on motor dynamics incorporating uncertainties. At each operating condition a genetic algorithm is used to optimize the PI controller parameters in a closed-loop vector control scheme. In the optimization procedure a performance index is developed to reflect the minimum speed deviation, minimum settling time and zero steady-state error. A fuzzy basis function network (FBFN) is utilized for online tuning of the PI controller parameters to ensure optimum drive performance under different disturbances. The proposed FBFN-based PI controller provides a natural framework for combining numerical and linguistic information in a uniform fashion. The proposed controller is successfully implemented in real time using a digital signal processor board DS 1102 for a laboratory 1-hp IPMSM. The effectiveness of the proposed controller is verified by simulation as well as experimental results at different dynamic operating conditions. The proposed controller is found to be robust for applications in an IPMSM drive.  相似文献   

4.
In this paper, a new and practical real-time gain-tuning method for proportional plus integral (PI) controllers has been formulated and implemented, using the speed control of a permanent-magnet synchronous motor drive system as a testbed. While the novel strategy enhances the performance of traditional PI controller greatly and proves to be a completely model-free approach, it also preserves the simple structure and features of PI controllers. The essential idea is as follows: (1) according to the system dynamics to step variation, define a performance index to evaluate the system response; (2) based on the monotonous relationship between the performance index and an intermediate PI gain parameter, this latter parameter is estimated with a modified binary search algorithm in order to improve the performance index; and (3) finally, PI gains are calculated and renewed according to the estimated intermediate gain parameter. Experiments have been thoroughly carried out to test the proposed method under different conditions. Besides being simple and easy to implement for real-time applications, the proposed method also possesses features such as versatility, stability, and effectiveness.  相似文献   

5.
郭宏  胡峻凡 《电气传动》2003,33(2):35-37
文章提出了一种在惯性负载条件下,无刷直流电动机位置伺服系统的控制方法。在以单神经元自适应PI控制器做速度环控制器的基础上,比较了以传统的PI控制器和单神经元自适应PI控制器分别作为位置控制器时的仿真结果,提出了将传统的PI控制器与单神经元自适应PI控制器相结合的新型位置控制方法。  相似文献   

6.
基于模型参考模糊自适应控制的永磁同步电机控制器设计   总被引:3,自引:0,他引:3  
基于模型参考模糊自适应控制(MRFAC)方法设计永磁同步电机(PMSM)速度控制器.该控制器具有传统模型参考自适应控制构架.传统模型参考自适应控制系统中的反馈控制器和常规自适应机构分别由主模糊控制器、模糊自适应机构替代,模糊逆模型结合自适应调整算法构成的模糊自适应机构对主控制器参数进行实时调整,以达到快速适应对象参数和状态变化的目的.利用模块化建模工具Matlab/SimuIink建立PMSM控制系统模型.仿真结果表明了所设计控制器运行平稳,具有良好的动、静态特性.  相似文献   

7.
新型双凸极永磁电机调速系统的变参数PI控制   总被引:25,自引:35,他引:25  
双凸极永磁电机转矩和转速之间具有强烈的非线性关系,采用常规线性PI控制器难以得到令人满意的控制特性,为此根据PI控制器各参数在调节过程中的不同作用,提出了适于单片机上实现的变参数PI控制模型,并用遗传算法求解其参数,理论分析与实验结果均表明,变参数PI控制器比常规PI控制器具有更强的自适应性,双凸极电机调速系统具有优良的稳态和动态性能,该文所提出的控制模型及其算法是正确和有效的。  相似文献   

8.
This paper presents the implementation of an artificial-neural-network (ANN)-based real-time adaptive controller for accurate speed control of an interior permanent-magnet synchronous motor (IPMSM) under system uncertainties. A field-oriented IPMSM model is used to decouple the flux and torque components of the motor dynamics. The initial estimation of coefficients of the proposed ANN speed controller is obtained by offline training method. Online training has been carried out to update the ANN under continuous mode of operation. Dynamic backpropagation with the Levenburg-Marquardt algorithm is utilized for online training purposes. The controller is implemented in real time using a digital-signal-processor-based hardware environment to prove the feasibility of the proposed method. The simulation and experimental results reveal that the control architecture adapts and generalizes its learning to a wide range of operating conditions and provides promising results under parameter variations and load changes.  相似文献   

9.
This paper proposes a speed control of Switched Reluctance Motor (SRM) supplied by Photovoltaic (PV) system. The proposed design of the speed controller is formulated as an optimization problem. Ant Colony Optimization (ACO) algorithm is employed to search for the optimal Proportional Integral (PI) parameters of the proposed controller by minimizing the time domain objective function. The behavior of the proposed ACO has been estimated with the behavior of Genetic Algorithm (GA) in order to prove the superior efficiency of the proposed ACO in tuning PI controller over GA. Also, the behavior of the proposed controller has been estimated with respect to the change of load torque, variable reference speed, ambient temperature, and radiation. Simulation results confirm the better behavior of the optimized PI controller based on ACO compared with optimized PI controller based on GA over a wide range of operating conditions.  相似文献   

10.
This paper presents a novel speed control scheme of an induction motor (IM) using fuzzy-logic control. The fuzzy-logic controller (FLC) is based on the indirect vector control. The fuzzy-logic speed controller is employed in the outer loop. The complete vector control scheme of the IM drive incorporating the FLC is experimentally implemented using a digital signal processor board DS-1102 for the laboratory 1-hp squirrel-cage IM. The performances of the proposed FLC-based IM drive are investigated and compared to those obtained from the conventional proportional-integral (PI) controller-based drive both theoretically and experimentally at different dynamic operating conditions such as sudden change in command speed, step change in load, etc. The comparative experimental results show that the FLC is more robust and, hence, found to be a suitable replacement of the conventional PI controller for the high-performance industrial drive applications.  相似文献   

11.
静止同步补偿器的最优控制策略   总被引:1,自引:0,他引:1  
基于双机系统,建立了静止同步补偿器(static synchronous compensator,STATCOM)的数学模型,设计了最优控制器。通过数字仿真,对比分析了STATCOM分别采用最优控制与传统PI控制时,在电网发生短路故障和负载阶跃工况下的性能,着重分析了其对电压和无功的影响。结果表明最优控制器具有更好的静、暂态稳定性能,并且响应速度优于PI控制,证明了所设计最优控制器的优越性和有效性。  相似文献   

12.
江洪  严传馨 《微电机》2022,(6):29-34
针对无刷直流电机调速系统强耦合与非线性时变的特点,设计了一种无刷直流电机区间二型模糊逻辑控制器,通过动态调节控制器参数,实现无刷直流电机高精度速度控制,提升电机控制性能。基于MATLAB/Simulink环境搭建无刷直流电机调速系统仿真模型,并在恒速、加减速和突加负载三种工况下,比较区间二型模糊逻辑控制与传统PI控制的电机转速响应差异。仿真结果表明:相比于传统PI控制,基于区间二型模糊逻辑控制的电机响应速度快,控制精度高,抗干扰能力强,可以有效降低不确定性对系统的影响,具有较强的鲁棒性。  相似文献   

13.
This paper presents a robust sliding mode control (SMC)-based model reference adaptive system (MRAS) aimed at improving the dynamic performance of interior permanent magnet synchronous motor (IPMSM) drives. MRAS following a speed controller for IPMSM drives is developed. The error signal between the plant speed and MRAS speed is augmented to permit the prescribed specifications be maintained using SMC. The load disturbance is detected using a load torque estimator and is compensated through the q-axis current reference value. The load torque estimator is used to provide a feedforward value in the speed controller in order to decouple the load torque from the speed control. This method can improve IPMSM dynamic performance against the disturbance torque without increasing SMC gain due to both chattering and stability limitations. The complete field-oriented control of an IPMSM drive with the proposed controller is successfully implemented in real time using the DSP-DS1102 control board for a laboratory 1-hp motor. A performance comparison of the proposed controller with the conventional PI controller is also provided. The efficacy of the proposed controller is verified by simulation and experimentation under different operating conditions. It is found that the proposed controller provides an excellent speed response under load torque disturbance and parameter uncertainty.  相似文献   

14.
This paper presents a robust speed controller for field oriented controlled interior permanent magnet synchronous motor (IPMSM) drives. The proposed controller is designed using integral variable structure control (IVSC) combined with linear quadratic regulator (LQR). The LQR scheme is used to decide the optimal feedback gain to shape the system dynamics by tuning the IVSC switching plane to guarantee the robustness of the control algorithm. The complete drive is implemented in real-time using digital signal processor (DSP) control board DS1102. The tracking properties and robustness of the proposed scheme are examined through both simulations and experimental work. It guarantees accurate control performance in the presence of parameter variations, step speed change and load disturbances. The performance of IPMSM drive system with a conventional proportional-integral (PI) controller is presented in comparison with the proposed controller. The results show a significant improvement in both the transient and steady state responses over the conventional PI controller.  相似文献   

15.
With high penetration of renewable energy sources (RESs) in modern power systems, system frequency becomes more prone to fluctuation as RESs do not naturally have inertial properties. A conventional energy storage system (ESS) based on a battery has been used to tackle the shortage in system inertia but has low and short-term power support during the disturbance. To address the issues, this paper proposes a new synthetic inertia control (SIC) design with a superconducting magnetic energy storage (SMES) system to mimic the necessary inertia power and damping properties in a short time and thereby regulate the microgrid (µG) frequency during disturbances. In addition, system frequency deviation is reduced by employing the proportional-integral (PI) controller with the proposed SIC system. The efficacy of the proposed SIC system is validated by comparison with the conventional ESS and SMES systems without using the PI controller, under various load/renewable perturbations, nonlinearities, and uncertainties. The simulation results highlight that the proposed system with SMES can efficiently manage several disturbances and high system uncertainty compared to the conventional ESS and SMES systems, without using the PI controller.  相似文献   

16.
A scheme is presented for the speed control of rolling mill drives. The proposed speed controller is based on a two-degree-of-freedom (TDF) structure and uses an observer-based state feedback compensator for the major control loop. The control method yields a robust system with respect to system uncertainties and modeling errors and is very effective for vibration suppression. Experimental verification was carried out on a prototype rolling mill minimodel system. The experimental drive system has a three-mass-model structure (motor-gear-load) connected by low stiffness shafts. The mechanical resonances and the inertia ratios between the motor, gear, and load are comparable to those of an actual rolling mill system (resonant frequencies are at 17.4 Hz and 51.3 Hz). The proposed scheme was compared to the conventional PI controller and the performance of each scheme is presented. A high closed loop speed bandwidth was obtained with the proposed TDF speed controller  相似文献   

17.
为了降低载人电动飞机在巡航过程中永磁同步电机(PMSM)转速响应系统易受参数摄动和外界扰流影响,提出了一种电动飞机PMSM的转动惯量在线辨识与转矩扰动补偿滑模控制(SMC)方法。通过一种自适应遗忘因子最小二乘算法对转动惯量进行在线辨识,对控制器的参数进行实时匹配,并将辨识后的转动惯量引入龙贝格扰动观测器对负载转矩变化进行观测,同时针对扰动进行估算与补偿。以一种新型趋近率的滑模转速控制策略代替PI转速控制策略,该方法在保留SMC鲁棒性强的优点削减了滑模变结构带来的抖振干扰,提升了系统的响应速度,最终通过仿真及半实物试验方式验证了该方法的有效性。  相似文献   

18.
针对风速随机性给风能转换系统(wind energy conversion system, WECS)带来的非线性和参数不确定性,提出了一种模糊自耦合PI控制方案用于低风速的最大功率点跟踪。自耦合PI被用来完成基本的转速跟踪,以实现对风力机尖速比的最优化控制。而模糊控制器则被用来获取自耦合PI在不同工作点下的控制参数,以提高系统对风速变化的适应能力。为了验证所提方案的可行性,在Matlab/Simulink搭建的2 MW风能转换系统仿真模型中开展了与传统方法的对比实验。仿真结果表明,相比于传统PI、模糊PI以及GA-PI,所提出方法拥有更佳的转速跟踪性能、更平滑的响应曲线以及更多的电能输出。  相似文献   

19.
The objective of this paper is to provide a comparison between the traditional radial field permanent-magnet brushless machine and four unique configurations of axial field permanent-magnet brushless DC machines. These consist of a single-gap slotted axial field machine, a dual-gap slotted axial field machine, a single-gap slotless axial field machine, and a dual-gap slotless axial field machine. The comparison is done at five power levels ranging from 0.25 to 10 kW. A rated speed of 2000 r/min is chosen for the 0.25-kW designs while 1000 r/min is chosen for the rest of the designs. The trends in performance and sizing for the different power outputs are obtained to get an understanding of the capability of various machine configurations. The comparison consists of required copper, steel, and magnet weights, copper and iron loss, moment of inertia, torque per unit moment of inertia, power per unit active weight, and power per unit active volume for five different power levels. For a given application, the results provide an indication of the machine best suited with respect to performance and size. The basis for the comparison is described with details on the design procedure  相似文献   

20.
针对城轨牵引无传感器内置式永磁同步电机的运行要求,设计了一种基于新型滑模观测器的内置式永磁同步电机转速及转子位置观测器,通过电机电流的滑模观测模块对扩展反电动势进行观测,使用S型函数取代传统的离散控制律,以削弱系统“抖振”;采用转速参数辨识和转子位置角度的锁相环将转速与位置分开观测,以提高转速和转子位置的观测精度;采用变参数PI控制器替代传统的内置式永磁同步电机速度控制环中恒参数PI控制器,以改善系统动态性能.证明了该新型滑模观测器的控制系统的稳定性,开发了基于STM32F103嵌入式微控制器的滑模观测矢量控制系统,实验结果验证了该控制策略的有效性与可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号